A new fixed point theorem in a cone is applied to obtain the existence of positive solutions of some fourthorder beam equation boundary value problems with dependence on the firstorder derivative where is continuous.
1. Introduction
It is well known that beam is one of the basic structures in architecture. It is greatly used in the designing of bridge and construction. Recently, scientists bring forward the theory of combined beams. That is to say, we can bind up some stratified structure copings into one global combined beam with rock bolts. The deformations of an elastic beam in equilibrium state, whose two ends are simply supported, can be described by following equation of deflection curve:
where is Yang's modulus constant, is moment of inertia with respect to axes, determined completely by the beam's shape crosssection. Specially, if the crosssection is a rectangle with a height of and a width of Also, is loading at . If the loading of beam considered is in relation to deflection and rate of change of deflection, we need to research the more general equation
According to the forms of supporting, various boundary conditions should be considered. Solving corresponding boundary value problems, one can obtain the expression of deflection curve. It is the key in design of constants of beams and rock bolts.
Owing to its importance in physics and engineering, the existence of solutions to this problem has been studied by many authors, see [1–10]. However, in practice, only its positive solution is significant. In [1, 9, 11, 12], Aftabizadeh, Del Pino and Manásevich, Gupta, and Pao showed the existence of positive solution for
under some growth conditions of and a nonresonance condition involving a twoparameter linear eigenvalue problem. All of these results are based on the LeraySchauder continuation method and topological degree.
The lower and upper solution method has been studied for the fourthorder problem by several authors [2, 3, 7, 8, 13, 14]. However, all of these authors consider only an equation of the form
with diverse kind of boundary conditions. In [10], Ehme et al. gave some sufficient conditions for the existence of a solution of
with some quite general nonlinear boundary conditions by using the lower and upper solution method. The conditions assume the existence of a strong upper and lower solution pair.
Recently, Krasnosel'skii's fixed point theorem in a cone has much application in studying the existence and multiplicity of positive solutions for differential equation boundary value problems, see [3, 6]. With this fixed point theorem, Bai and Wang [6] discussed the existence, uniqueness, multiplicity, and infinitely many positive solutions for the equation of the form
where is a constant.
In this paper, via a new fixed point theorem in a cone and concavity of function, we show the existence of positive solutions for the following problem:
where is continuous.
We point out that positive solutions of (1.7) are concave and this concavity provides lower bounds on positive concave functions of their maximum, which can be used in defining a cone on which a positive operator is defined, to which a new fixed point theorem in a cone due to Bai and Ge [5] can be applied to obtain positive solutions.
2. Fixed Point Theorem in a Cone
Let be a Banach space and a cone. Suppose are two continuous nonnegative functionals satisfying
where are two positive constants.
Lemma 2.1 (see [5]).
Let are constants and
are two open subsets in such that . In addition, let
Assume is a completely continuous operator satisfying
then has at least one fixed point in
3. Existence of Positive Solutions
In this section, we are concerned with the existence of positive solutions for the fourthorder twopoint boundary value problem (1.7).
Let with be a Banach space, a cone. Define functionals
then are two continuous nonnegative functionals such that
and (2.1) hold.
Denote by Green's function for boundary value problem
Then , for , and
Let
However, (1.7) has a solution if and only if solves the operator equation
It is well know that is completely continuous.
Theorem 3.1.
Suppose there are four constants such that and the following assumptions hold:
Then, (1.7) has at least one positive solution such that
Proof.
Let
be two bounded open subsets in . In addition, let
For , by , there is
For , because , so , that is to say concave on , it follows that
Combined with and , for , there is
For , by , there is
For , by , there is
Now, Lemma 2.1 implies there exists such that , namely, (1.7) has at least one positive solution such that
that is,
The proof is complete.
Theorem 3.2.
Suppose there are five constants such that and the following assumptions hold
Then, (1.7) has at least one positive solution such that
Proof.
We just need notice the following difference to the proof of Theorem 3.1.
For , the concavity of implies that for . By , there is
For , by , there is
The rest of the proof is similar to Theorem 3.1 and the proof is complete.
References

Aftabizadeh, AR: Existence and uniqueness theorems for fourthorder boundary value problems. Journal of Mathematical Analysis and Applications. 116(2), 415–426 (1986). Publisher Full Text

Agarwal, RP: On fourth order boundary value problems arising in beam analysis. Differential and Integral Equations. 2(1), 91–110 (1989)

Agarwal, RP, O'Regan, D, Wong, PJY: Positive Solutions of Differential, Difference, and Integral Equations, Kluwer Academic Publishers, Boston, Mass, USA (1999)

Bai, ZB: The method of lower and upper solutions for a bending of an elastic beam equation. Journal of Mathematical Analysis and Applications. 248(1), 195–202 (2000). Publisher Full Text

Bai, ZB, Ge, WG: Existence of positive solutions to fourth order quasilinear boundary value problems. Acta Mathematica Sinica. 22(6), 1825–1830 (2006). Publisher Full Text

Bai, ZB, Wang, HY: On positive solutions of some nonlinear fourthorder beam equations. Journal of Mathematical Analysis and Applications. 270(2), 357–368 (2002). Publisher Full Text

Cabada, A: The method of lower and upper solutions for second, third, fourth, and higher order boundary value problems. Journal of Mathematical Analysis and Applications. 185(2), 302–320 (1994). Publisher Full Text

De Coster, C, Sanchez, L: Upper and lower solutions, AmbrosettiProdi problem and positive solutions for fourth order O.D.E. Rivista di Matematica Pura ed Applicata.(14), 1129–1138 (1994)

Del Pino, MA, Manásevich, RF: Existence for a fourthorder boundary value problem under a twoparameter nonresonance condition. Proceedings of the American Mathematical Society. 112(1), 81–86 (1991)

Ehme, J, Eloe, PW, Henderson, J: Upper and lower solution methods for fully nonlinear boundary value problems. Journal of Differential Equations. 180(1), 51–64 (2002). Publisher Full Text

Gupta, CP: Existence and uniqueness theorems for the bending of an elastic beam equation. Applicable Analysis. 26(4), 289–304 (1988). Publisher Full Text

Pao, CV: On fourthorder elliptic boundary value problems. Proceedings of the American Mathematical Society. 128(4), 1023–1030 (2000). Publisher Full Text

Yao, QL: Existence and multiplicity of positive solutions to a singular elastic beam equation rigidly fixed at both ends. Nonlinear Analysis: Theory, Methods & Applications. 69(8), 2683–2694 (2008). PubMed Abstract  Publisher Full Text

Schröder, J: Fourth order twopoint boundary value problems; estimates by twosided bounds. Nonlinear Analysis: Theory, Methods & Applications. 8(2), 107–114 (1984). PubMed Abstract  Publisher Full Text