The purpose of this work is to investigate the uniqueness and existence of local solutions for the boundary value problem of a quasilinear parabolic equation. The result is obtained via the abstract theory of maximal regularity. Applications are given to some model problems in nonstationary radiative heat transfer and reactiondiffusion equation with nonlocal boundary flux conditions.
1. Introduction
The existence of solutions for quasilinear parabolic equation with boundary conditions and initial conditions can be discussed by maximal regularity, and more and more works on this field show that the maximal regularity method is efficient. Here we will use some of recently results developed by H. Amann to investigate a specific boundary value problems and then apply the existence theorem to two nonlocal problems.
This paper consists of three parts. In the next section we present and prove the existence and unique theorem of an abstract boundary problem. Then we give some applications of the results in Sections 3 and 4 to two reactiondiffusion model problems that arise from nonstationary radiative heat transfer in a system of moving absolutely black bodies and a reactiondiffusion equation with nonlocal boundary flux conditions.
2. Notations and Abstract Result
We consider the following quasilinear parabolic initial boundary value problem (IBVP for short):
where is a bounded strictly Lipschitz domain with its boundary and , ,
and is a secondorder strongly elliptic differential operator with the boundary operator given by
The coefficient matrix satisfies regularity conditions on , respectively. The directional derivative , is the outer unitnormal vector on ; the function is defined as for ; denotes the trace operator.
We introduce precise assumptions:
where ) are Carathéodory functions; that is, (resp., ) is measurable in (resp., in for each and continuous in for a.e. (resp., . More general, the function can be a nonlocal function, for example, or .
Let and be Banach spaces, we introduce some notations as follows:
(i), . , .
(ii) for , .
(iii)all continuous linear operators from into , and .
(iv) denotes the Nemytskii operator induced by .
(v) denotes the set of all locally Lipschitzcontinuous functions from into .
(vi), , and , denotes the set of all Carathéodory functions on such that , and there exists a nondecreasing function with
Particularly, is independent of if .
(vii) denotes the SobolevSlobodeckii space for and with the norm , especially, ; and
(viii), ( is the set of integral numbers), is defined as
where , is the dual space of , and is the formally adjoint operator.
(x) if and is an interval in .
(xi) denotes all maps possessing the property of maximal regularity on with respect to , that is, given , the initial problem
has a unique solution .
Now we turn to discuss the local existence result. We write
then,
Exactly, as , where denotes the Banach space of all functions being bounded and uniformly continuous in . So, we will not emphasize it in the following.
A (weak) solution of IBVP (2.1) is defined as a function , , satisfying
where and denote the obvious duality pairings on and , respectively.
Set
After these preparations we introduce the following hypotheses:
(H1) and .
(H2) with , and there exists a such that
, with , and .
(H3) for some .
Theorem 2.1.
Let assumptions (H1)(H3) be satisfied. Then for each the quasilinear problem (2.1) possesses a unique weak solution for some .
Proof.
Recall that
The Nemytskii operator is defined as . The fact
shows the maximal regularity of the operator . By [1, Theorem 2.1], if, for , for some , then the existence and the uniqueness of a local solution will be proved.
The remain work is to check the Lipschitzcontinuity. Set
Then . So, for with we have
From , we infer that
where . Note that , we can choose such that
On the other hand, the hypotheses guarantee that
Due to and , Hölder inequality follows that
The hypothesis of means that one can find an such that
Obviously, if , the above inequality is followed from (2.20) immediately. Hence it follows from (2.19) and (2.22) that
This ends the proof.
We apply the above theorem to the following two examples in next sections. For this, in the remainder we suppose that hypotheses (H1)(H2) hold and that
3. A Radiative Heat Transfer Problem
We see a nonlinear initialboundary value problem, which, in particular, describes a nonstationary radiative heat transfer in a system of absolutely black bodies (e.g., refer to [2]). A problem is
3.1. Local Solvability
We assume that (Hr)
(Hr1);
(Hr2) is locally Lipschitz continuous and .
Theorem 3.1.
Let assumptions (H1)(H2) and (Hr) be satisfied. Then problem (3.1), for all , has a unique for some .
Proof.
Note that the embedding (2.14) holds:
Hence Theorem 2.1 implies the result immediately.
In fact, Amosov proved in 2005 the uniqueness of the solution for a simple case, that is, problem in which the matrix is independent of (see [2, Theorem 1.4]). In this paper, we also can get the positivity of the solution and the estimates of the solution in and in this part. We have tried to achieve the global existence, but it is still an open problem.
In the rest of this section, we always assume that (H1)(H2) and (Hr) hold.
3.2. Positivity
Assume that
(H^{+}) is nondecreasing with , and
Theorem 3.2.
Let assumption () be satisfied. If is nonnegative, then the solution of problem (3.1) is also nonnegative.
Proof.
Put . Multiplying the equation with and integrating over , we have
By using the assumption of (), we can get following equality:
So,
At the last inequality, the monotonity of on and the restriction are used. Therefore,
If , then . The assertion follows.
3.3. norm
We denote by the maximal interval of the solution of problem (3.1).
Lemma 3.3.
There exists a constant such that the solution of problem (3.1) satisfies
Proof.
Multiplying by and integrating over , we have
That is,
As similar as the inequality (3.6), we have
Hence,
By using the embedding and letting small enough, it is easy to get that
3.4. norm
Theorem 3.4.
If and , then the solution of problem (3.1) is bounded with its norm for all .
Proof.
From the hypothesis (H1) and embedding (2.10), one has that and . By multiplying with and ) and integrating over , we have
That is,
But,
Therefore,
where Young's inequality, , has been used at the last inequality. We apply the embedding again with and choose small enough, then we attain the following inequality:
By Gronwall's inequality, the inequality (3.18) becomes
Set , then we deduce that
Let the inequality (3.20) implies
The claim follows.
One immediate consequence of the above theorem is.
Corollary 3.5.
The norm of the solution , that is, , of problem (3.1) is nonincreasing if .
4. A Nonlocal Boundary Value Problem
We now consider the problem (2.1) with the following boundary value condition:
The function in (4.1) can be in nonlocal form.
IBVP (2.1) with a nonlocal term stands, for example, for a model problem arising from quasistatic thermoelasticity. Results on linear problems can be found in [3–5]. As far as we know, this kind of nonlocal boundary condition appeared first in 1952 in a paper [6] by W. Feller who discussed the existence of semigroups. There are other problems leading to this boundary condition, for example, control theory (see [7–12] etc.). Some other fields such as environmental science [13] and chemical diffusion [14] also give rise to such kinds of problems. We do not give further comments here.
Carl and Heikkilä [15] proved the existence of local solutions of the semilinear problem by using upper and lower solutions and pseudomonotone operators. But their results based on the monotonicity hypotheses of , , and with respect to .
In this section, we assume that (H1) and (H2) always hold and assume that
(Hn1) and for some ;
(Hn2), satisfies the Carathéodory condition on and .
By the embedding theorem and Theorem 2.1, we get immediately.
Theorem 4.1.
Suppose hypotheses of (Hn) satisfy. Then problem (2.1), for all , with defined in (4.1) has a unique for some .
For the simplicity in expression, we turn to consider a problem with nonlocal boundary value
where
and
(Hk)The function satisfies the Carathéodory condition on , and f with
Theorem 4.2.
Let assumption (Hk) be satisfied. Then Problem (4.2), for any , has a unique solution for some .
Proof.
First, we see that
Choose such that , then . Consequently, there exists such that
Similarly, from we have
Combining two inequalities (4.6) and (4.7), we obtain that
The claim follows immediately from Theorem 4.1.
A special case of problem (4.2) is
That is, and in (4.9) are independent of gradient .
4.1. norm
In order to discuss the global existence of solution, in the rest of this section we assume the following.
(Hkl)Suppose there exists a continuous function such that
Lemma 4.3.
There exists a constant such that the solution of problem (4.9) satisfies
Proof.
We multiply the first equation in (4.9) with and then integrate over , and we find that
Since for , by interpolation inequality and Young's inequality we have that
Apply Young's inequality again and then choose small enough (); it is not difficult to get
where for . Therefore, by multiplying with and integrating over , the inequality (4.14) follows the claim.
4.2. norm
Lemma 4.4.
Let assumptions of Lemma 4.3 be satisfied. If , then the solution of problem (4.9) satisfies
Proof.
We multiply the first equation in (4.9) with and integrate over , then we reach that
As the same as the inequality (4.13), we have
Hence,
We might as well assume that , so,
The boundedness of solution for is used in above deduction.
Let ( small enough, then we have
Multiplying with , then integrating over , we obtain that
By a similar limitation process as in (3.21), we get
This closes the end of proof.
4.3. Decay Behavior
In order to investigate the decay behavior of solution for problem (4.9), we assume that
(Hkd) there are two continuous function and () such that
for all .
Theorem 4.5.
Let the assumption (Hkd) be satisfied and, be the solution of problem (4.9) with . Then decay to zero as for some small functions .
Proof.
We use to multiply the first equation in the system (4.9) and then integrate over . Thus, we get that
In the above process the inequality (4.13) is used. If we choose as
then
This ends the proof.
Moreover, one can verify that also decay to zero (as ) if
Acknowledgments
The first author wishes to thank Professor Herbert Amann for many useful discussions concerning the problem of this paper. The author also want to thank the referees' suggestions. This work is supported partly by the National NSF of China (Grant nos. 10572080 and 10671118) and by Shanghai Leading Academic Discipline Project (no. J50101).
References

Amann, H: Quasilinear parabolic problems via maximal regularity. Advances in Differential Equations. 10(10), 1081–1110 (2005)

Amosov, AA: Global solvability of a nonlinear nonstationary problem with a nonlocal boundary condition of radiative heat transfer type. Differential Equations. 41(1), 96–109 (2005). Publisher Full Text

Day, WA: A decreasing property of solutions of parabolic equations with applications to thermoelasticity. Quarterly of Applied Mathematics. 40(4), 468–475 (1983)

Friedman, A: Monotonic decay of solutions of parabolic equations with nonlocal boundary conditions. Quarterly of Applied Mathematics. 44(3), 401–407 (1986)

Muraveĭ, LA, Filinovskiĭ, AV: On a problem with nonlocal boundary condition for a parabolic equation. Mathematics of the USSRSbornik. 74(1), 219–249 (1993). Publisher Full Text

Feller, W: The parabolic differential equations and the associated semigroups of transformations. Annals of Mathematics. 55(3), 468–519 (1952). Publisher Full Text

Lions, JL, Magenes, E: NonHomogeneous Boundary Value Problems and Applications. Vol. I,p. xvi+357. Springer, Berlin, Germany (1972)

Lions, JL, Magenes, E: NonHomogeneous Boundary Value Problems and Applications. Vol. II,p. xi+242. Springer, Berlin, Germany (1972)

Lasiecka, I: Unified theory for abstract parabolic boundary problems—a semigroup approach. Applied Mathematics and Optimization. 6(1), 287–333 (1980). Publisher Full Text

Amann, H: Feedback stabilization of linear and semilinear parabolic systems. In: Clement P, Invernizzi S, Mitidieri E, Vrabie II (eds.) Semigroup Theory and Applications (Trieste, 1987), Lecture Notes in Pure and Applied Mathematics, vol. 116, pp. 21–57. Dekker, New York, NY, USA (1989)

Agarwal, RP, Bohner, M, Shakhmurov, VB: Linear and nonlinear nonlocal boundary value problems for differentialoperator equations. Applicable Analysis. 85(67), 701–716 (2006). Publisher Full Text

Ashyralyev, A: Nonlocal boundaryvalue problems for abstract parabolic equations: wellposedness in Bochner spaces. Journal of Evolution Equations. 6(1), 1–28 (2006). Publisher Full Text

Capasso, V, Kunisch, K: A reactiondiffusion system modelling manenvironment epidemics. Annals of Differential Equations. 1(1), 1–12 (1985)

Taira, K: Diffusion Processes and Partial Differential Equations,p. xviii+452. Academic Press, Boston, Mass, USA (1988)

Carl, S, Heikkilä, S: Discontinuous reactiondiffusion equations under discontinuous and nonlocal flux conditions. Mathematical and Computer Modelling. 32(11–13), 1333–1344 (2000)