Open Access Research Article

The Block-Grid Method for Solving Laplace's Equation on Polygons with Nonanalytic Boundary Conditions

AA Dosiyev*, S Cival Buranay and D Subasi

Author Affiliations

Department of Mathematics, Eastern Mediterranean University, Gazimagusa, Cyprus, Mersin 10, Turkey

For all author emails, please log on.

Boundary Value Problems 2010, 2010:468594  doi:10.1155/2010/468594

Published: 24 June 2010

Abstract

The block-grid method (see Dosiyev, 2004) for the solution of the Dirichlet problem on polygons, when a boundary function on each side of the boundary is given from , , is analized. In the integral represetations around each singular vertex, which are combined with the uniform grids on "nonsingular" part the boundary conditions are taken into account with the help of integrals of Poisson type for a half-plane. It is proved that the final uniform error is of order , where is the error of the approximation of the mentioned integrals, is the mesh step. For the -order derivatives () of the difference between the approximate and the exact solution in each "singular" part order is obtained, here is the distance from the current point to the vertex in question, is the value of the interior angle of the th vertex. Finally, the method is illustrated by solving the problem in L-shaped polygon, and a high accurate approximation for the stress intensity factor is given.