We study the existence of multiple positive solutions for thorder multipoint boundary value problem. , , , , where , , . We obtained the existence of multiple positive solutions by applying the fixed point theorems of cone expansion and compression of norm type and LeggettWilliams fixedpoint theorem. The results obtained in this paper are different from those in the literature.
1. Introduction
The existence of positive solutions for thorder multipoint boundary problems has been studied by some authors (see [1, 2]). In [1], Pang et al. studied the expression and properties of Green's funtion and obtained the existence of at least one positive solution for thorder differential equations by applying means of fixed point index theory:
where
By using the fixed point theorems of cone expansion and compression of norm type, Yang and Wei in [2] also obtained the existence of at least one positive solutions for the BVP (1.1) if . This work is motivated by Ma (see [3]). This method is simpler than that of [1]. In addition, Eloe and Ahmad in [4] had solved successfully the existence of positive solutions to the BVP (1.1) if = 1. Hao et al. in [5] had discussed the existence of at least two positive solutions for the BVP (1.1) by applying the Krasonse'skiiGuo fixed point theorem on cone expansion and compression if = 1. However, there are few papers dealing with the existence of multiple positive solutions for thorder multipoint boundary value problem.
In this paper, we study the existence of at least two positive solutions associated with the BVP (1.1) by applying the fixed point theorems of cone expansion and compression of norm type if and the existence of at least three positive solutions for BVP (1.1) by using LeggettWilliams fixedpoint theorem. The results obtained in this paper are different from those in the literature and essentially improve and generalize some wellknown results (see [1–8]).
The rest of the paper is organized as follows. In Section 2, we present several lemmas. In Section 3, we give some preliminaries and the fixed point theorems of cone expansion and compression of norm type. The existence of at least two positive solutions for the BVP (1.1) is formulated and proved in Section 4. In Section 5, we give LeggettWilliams fixedpoint theorem and obtain the existence of at least three positive solutions for the BVP (1.1).
2. Several Lemmas
Definition 2.1.
A function is said to be a position of the BVP (1.1) if satisfies the following:
();
() for and satisfies boundary value conditions (1.1);
() hold for
Lemma 2.2 (see [1]).
Suppose that
then for any , the problem
has a unique solution:
where
Lemma 2.3 (see [1]).
Let ; Green's function defined by (2.4) satisfies
where :
We omit the proof Lemma 2.3 here and you can see the detail of Theorem in [1].
Lemma 2.4 (see [2]).
Let , and ; the unique solution of the BVP (2.2)
satisfies
where is defined by Lemma 2.3, .
3. Preliminaries
In this section, we give some preliminaries for discussing the existence of multiple positive solutions of the BVP (1.1) in the next. In real Banach space in which the norm is defined by
set
Obviously, is a positive cone in , where is from Lemma 2.3.
For convenience, we make the following assumptions:
() is continuous and does not vanish identically, for ;
() is continuous;
()
Let
where is defined by (2.4).
From Lemmas 2.2–2.4, we have the following result.
Lemma 3.1 (see [2]).
Suppose that are satisfied, then is a completely continuous operator, , and the fixed points of the operator in are the positive solutions of the BVP (1.1).
For convenience, one introduces the following notations. Let
Problem 1.
Inspired by the work of the paper [2], whether we can obtain a similar conclusion or not, if
or
The aim of the following section is to establish some simple criteria for the existence of multiple positive solutions of the BVP (1.1), which gives a positive answer to the questions stated above. The key tool in our approach is the following fixed point theorem, which is a useful method to prove the existence of positive solutions for differential equations, for example [2–5, 9].
Suppose that is a real Banach space and is cone in , and let be two bounded open sets in such that . Let operator be completely continuous. Suppose that one of two conditions holds:
(i) for all for all
(ii) for all for all .
then has at least one fixed point in
4. The Existence of Two Positive Solutions
Theorem 4.1.
Suppose that the conditions are satisfied and the following assumptions hold:
();
();
()There exists a constant such that .
Then the BVP (1.1) has at least two positive solutions and such that
Proof.
At first, it follows from the condition that we may choose such that
Set , and ; from (3.3) and (2.4) and Lemma 2.4, for , we have
Therefore, we have
Further, it follows from the condition that there exists such that
Let , set , then and Lemma 2.4 imply
and by the condition , (2.4), (3.3), and Lemma 2.4, we have
Therefore, we have
Finally, let and . By (2.3), (3.3), and the condition , we have
which implies
Thus from (4.4)–(4.10) and Lemmas 3.1 and 3.2, has a fixed point in and a fixed in . Both are positive solutions of BVP (1.1) and satisfy
The proof is complete.
Corollary 4.2.
Suppose that the conditions are satisfied and the following assumptions hold:
();
();
()there exists a constant such that
Then the BVP (1.1) has at least two positive solutions and such that
Proof.
From the conditions , there exist sufficiently big positive constants such that
by the condition ; so all the conditions of Theorem 4.1 are satisfied; by an application of Theorem 4.1, the BVP (1.1) has two positive solutions and such that
Theorem 4.3.
Suppose that the conditions are satisfied and the following assumptions hold:
();
();
()there exists a constant such that .
Then the BVP (1.1) has at least two positive solutions and such that
Proof.
It follows from the condition that we may choose such that
Set and ; from (3.2) and (2.4), for , we have
Therefore, we have
It follows from the condition that there exists such that for and we consider two cases.
Case i.
Suppose that is unbounded; there exists such that for . Then for and , we have
Case ii.
If is bounded, that is, for all , taking , for and , we have
Hence, in either case, we always may set such that
Finally, set ; then and Lemma 2.4 imply
and by the condition , (2.4), and (3.3), we have
Hence, we have
From (4.18)–(4.24) and Lemmas 3.1 and 3.2, has a fixed point in and a fixed in . Both are positive solutions of the BVP(1.1) and satisfy
The proof is complete.
Corollary 4.4.
Suppose that the conditions are satisfied and the following assumptions hold:
();
();
()there exists a constant such that .
Then BVP (1.1) has at least two positive solutions and such that
The proof of Corollary 4.4 is similar to that of Corollary 4.2; so we omit it.
5. The Existence of Three Positive Solutions
Let be a real Banach space with cone . A map is said to be a nonnegative continuous concave functional on if is continuous and
for all and Let be two numbers such that and let be a nonnegative continuous concave functional on . We define the following convex sets:
Lemma 5.1 (see [12]).
Let be completely continuous and let be a nonnegative continuous concave functional on such that for . Suppose that there exist such that
(i)andfor
(ii)for
(iii) for with
Then has at least three fixed points in such that
Now, we establish the existence conditions of three positive solutions for the BVP (1.1).
Theorem 5.2.
Suppose that hold and there exist numbers and with such that the following conditions are satisfied:
where
Then the boundary value problem (1.1) has at least three positive solutions.
Proof.
Let be defined by (3.2) and let be defined by (3.3). For , let
Then it is easy to check that is a nonnegative continuous concave functional on with for and is completely continuous.
First, we prove that if holds, then there exists a number and To do this, by , there exist and such that
Set
it follows that for all . Take
If , then
that is,
Hence (5.10) show that if holds, then there exists a number such that maps into .
Now we show that and for all . In fact, take , so . Moreover, for , then , and we have
Therfore, by we obtain
Next, we assert that . In fact, if , by we have
Hence, for .
Finally, we assert that if and , then . To see this, if and ,then we have from Lemma 2.3 that
So we have
To sum up (5.10)(5.15), all the conditions of Lemma 5.1 are satisfied by taking . Hence, A has at least three fixed points; that is, BVP (1.1) has at least three positive solutions , and such that
The proof is complete.
Acknowledgments
The authors are grateful to the referee's valuable comments and suggestions. The project is supported by the Natural Science Foundation of Anhui Province (KJ2010B226), The Excellent Youth Foundation of Anhui Province Office of Education (2009SQRZ169), and the Natural Science Foundation of Suzhou University (2009yzk17)
References

Pang, C, Dong, W, Wei, Z: Green's function and positive solutions of th order point boundary value problem. Applied Mathematics and Computation. 182(2), 1231–1239 (2006). Publisher Full Text

Yang, J, Wei, Z: Positive solutions of th order point boundary value problem. Applied Mathematics and Computation. 202(2), 715–720 (2008). Publisher Full Text

Ma, R: Positive solutions of a nonlinear threepoint boundaryvalue problem. Electronic Journal of Differential Equations. 1999(34), 1–8 (1999)

Eloe, PW, Ahmad, B: Positive solutions of a nonlinear th order boundary value problem with nonlocal conditions. Applied Mathematics Letters. 18(5), 521–527 (2005). Publisher Full Text

Hao, X, Liu, L, Wu, Y: Positive solutions for nonlinear thorder singular nonlocal boundary value problems. Boundary Value Problems. 2007, (2007)

Ma, R: Existence of positive solutions for second order point boundary value problems. Annales Polonici Mathematici. 79(3), 265–276 (2002). Publisher Full Text

Ma, R, Castaneda, N: Existence of solutions of nonlinear point boundaryvalue problems. Journal of Mathematical Analysis and Applications. 256(2), 556–567 (2001). Publisher Full Text

Ma, R: Multiplicity of positive solutions for secondorder threepoint boundary value problems. Computers & Mathematics with Applications. 40(23), 193–204 (2000). PubMed Abstract  Publisher Full Text

Liu, B: Positive solutions of fourthorder two point boundary value problems. Applied Mathematics and Computation. 148(2), 407–420 (2004). Publisher Full Text

Guo, D: Nonlinear Functional Analysis, Shandong Science and Technology Press, Jinan, China (2004)

Guo, D, Lakshmikantham, V: Nonlinear Problems in Abstract Cones, Notes and Reports in Mathematics in Science and Engineering,p. viii+275. Academic Press, Boston, Mass, USA (1988)

Leggett, RW, Williams, LR: Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana University Mathematics Journal. 28(4), 673–688 (1979). Publisher Full Text