SpringerOpen Newsletter

Receive periodic news and updates relating to SpringerOpen.

Open Access Research

Regularity of large solutions for the compressible magnetohydrodynamic equations

Xin Liu1*, Yuming Qin2 and Xiaozhen Peng3

Author Affiliations

1 College of Information Sciences and Technology, Donghua University, Songjiang Shanghai, 201620, People's Republic of China

2 Department of Applied Mathematics, College of Sciences, Donghua University, Songjiang Shanghai 201620, People's Republic of China

3 Songyin School, Jinshan Shanghai, 201504, People's Republic of China

For all author emails, please log on.

Boundary Value Problems 2011, 2011:30  doi:10.1186/1687-2770-2011-30


The electronic version of this article is the complete one and can be found online at: http://www.boundaryvalueproblems.com/content/2011/1/30


Received:10 June 2011
Accepted:10 October 2011
Published:10 October 2011

© 2011 Liu et al; licensee Springer.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we consider the initial-boundary value problem of one-dimensional compressible magnetohydrodynamics flows. The existence and continuous dependence of global solutions in H1 have been established in Chen and Wang (Z Angew Math Phys 54, 608-632, 2003). We will obtain the regularity of global solutions under certain assumptions on the initial data by deriving some new a priori estimates.

Keywords:
magnetohydrodynamics (MHD); global solutions; regularity; initial-boundary value problem

1 Introduction

Magnetohydrodynamics (MHD) is concerned with the flow of electrically conducting fluids in the presence of magnetic fields, either externally applied or generated within the fluid by inductive action. The application of magnetohydrodynamics covers a very wide range of physical areas from liquid metals to cosmic plasmas, for example, the intensely heated and ionized fluids in an electromagnetic field in astrophysics, geophysics, high-speed aerodynamics, and plasma physics. There is a complex interaction between the magnetic and fluid dynamic phenomena, and both hydrodynamic and electrodynamic effects have to be considered. For convenience, we consider the following plane magnetohydrodynamic equations in the Lagrangian coordinate system:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M1">View MathML</a>

(1.1)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M2','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M2">View MathML</a>

(1.2)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M3">View MathML</a>

(1.3)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M4','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M4">View MathML</a>

(1.4)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M5','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M5">View MathML</a>

(1.5)

Here, v, u, w, b, θ, and p are the specific volume, the longitudinal velocity, the transverse velocity, the transverse magnetic filed, the absolute temperature, and the pressure, respectively; λ, μ, ν, and κ are the bulk viscosity coefficient, the shear viscosity coefficient, the magnetic diffusivity, and the heat conductivity, respectively.

We consider problem (1.1)-(1.5) in the region {y ∈ Ω: = (0, 1), t ≥ 0} under the initial-boundary conditions

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M6','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M6">View MathML</a>

(1.6)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M7','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M7">View MathML</a>

(1.7)

In this paper, we focus on an initial-boundary problem for the magnetohydrodynamic flows of a perfect gas with following equations of state:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M8','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M8">View MathML</a>

where R is the gas constant and cv is the heat capacity of the gas at constant volume. For concreteness, we assume that λ, μ, and ν are constants, and κ depends on the temperature θ with C1 κ(θ)/(1 + θr) ≤ C2 for some positive constants C1, C2 and, r ≥ 2. The growth condition assumed on κ is motivated by the physical fact: κ θ 5/2 for important physical regimes (see [1,2]). The total energy of the magnetohydrodynamics flows is

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M9','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M9">View MathML</a>

Before showing our main results, let us first recall the related results in the literature. For the one-dimensional ideal gas, i.e.,

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M10','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M10">View MathML</a>

(1.8)

with suitable positive constants cv, R. Kazhikhov and Shelukhin [3-5], Kawashima and Nishida [6] established the existence of global smooth solutions. Zheng and Qin [7] proved the existence of maximal attractors in Hi(i = 1, 2). However, under very high temperatures and densities, constitutive relations (1.8) become inadequate. Thus, a more realistic model would be a linearly viscous gas (or Newtonian fluid)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M11','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M11">View MathML</a>

(1.9)

satisfying Fourier's law of heat flux

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M12','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M12">View MathML</a>

(1.10)

whose internal energy e and pressure p are coupled by the standard thermodynamical relation (1.8). In this case, Kawohl [8] obtained the existence of global solutions with the exponents r ∈ [0, 1], q ≥ 2r + 2. Jiang [9] also established the global existence with basically same constitutive relations as those in [8] but with the exponents r ∈ [0, 1], q r + 1. When the exponents q, r satisfy the more general constitutive relations than those in [8,9], Qin [10] established the regularity and asymptotic behavior of global solutions with arbitrary initial data for a one-dimensional viscous heat-conductive real gas.

For the radiative and reactive gas, Ducomet [11] established the global existence and exponential decay in H1 of smooth solutions, and Umehara and Tani [12] proved the global existence of smooth solutions for a self-gravitating radiative and reactive gas.

For the radiative magnetohydrodynamic equations with self-gravitation, Ducomet and Feireisl [13] proved the existence of global-in-time solutions of this problem with arbitrarily large initial data and conservative boundary conditions on a bounded spatial domain in ℝ3. Recently, under the technical condition that κ(ρ, θ) satisfies

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M13">View MathML</a>

for some <a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M14','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M14">View MathML</a>, Zhang and Xie [14] investigated the existence of global smooth solutions.

For the non-radiative and non self-gravitation magnetohydrodynamic flows, there have been a number of studies under various conditions by several authors (see, e.g., [2,15-22]). The existence and uniqueness of local smooth solutions were first obtained in [21]; moreover, the existence of global smooth solutions with small smooth initial data was shown in [20]. Chen and Wang [15] investigated a free boundary problem with general large initial data with exponents r ∈ [0, 1], q ≥ 2r + 2. Under the technical condition that κ(ρ, θ) satisfies

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M15','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M15">View MathML</a>

for q ≥ 2, Chen and Wang [16] also proved the existence and continuous dependence of global strong solutions with large initial data. Wang [22] established large solutions to the initial-boundary value problem for planar magnetohydrodynamics. Under the technical condition upon

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M16','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M16">View MathML</a>

Fan et al. [18] investigated the uniqueness of the weak solutions of MHD with Lebesgue initial data. Fan et al. [19] also considered a one-dimensional plane compressible MHD flows and proved that as the shear viscosity goes to zero, global weak solutions converge to a solution of the original equations with zero shear viscosity. The uniqueness and continuous dependence of weak solutions for the Cauchy problem have been proved by Hoff and Tsyganov [17].

As mentioned above, the global existence in <a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M17','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M17">View MathML</a> of global solutions has never been studied for Equations (1.1)-(1.5) of the nonlinear one-dimensional compressible magnetohydrodynamics flows with initial-boundary conditions (1.6)-(1.7). The main aim of this paper is to prove the regularity of solutions in the subspace <a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M18','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M18">View MathML</a> of (Hi[0, 1])7(i = 2, 4) for systems (1.1)-(1.7). In order to obtain higher regularity of global solutions, there are many complicated estimates on higher derivations of solutions to be involved, this is our main difficulty. To overcome this difficulty, we should use some proper embedding theorems, the interpolation techniques as well as many delicate estimates. This is the novelty of the paper.

We define three spaces as follows:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M19','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M19">View MathML</a>

The notation in this paper will be stated as follows:

Lp, 1 ≤ p ≤ +∞, Wm, p, m N, H1 = W1,2, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M20','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M20">View MathML</a> denote the usual (Sobolev) spaces on Ω. In addition, ||·||B denotes the norm in the space B, we also put <a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M21','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M21">View MathML</a>. Constants Ci(i = 1, 2, 3, 4) depend on the <a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M18','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M18">View MathML</a> norm of the initial data (v0, u0, w0, b0, θ0) and T > 0.

Now we are in a position to state our main results.

Theorem 1.1 Assume that the initial data <a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M22','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M22">View MathML</a>and e, p, and κ are C3 functions. Then, the problem (1.1) -(1.7) admits a unique global solution <a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M23','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M23">View MathML</a>such that for any T > 0,

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M24','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M24">View MathML</a>

(1.11)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M25','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M25">View MathML</a>, constant <a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M26','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M26">View MathML</a> is determined by

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M27','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M27">View MathML</a>

Theorem 1.2 Assume that the initial data <a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M28','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M28">View MathML</a>and e, p, and κ are C5 functions on 0 < v < +∞ and 0 ≤ θ < +∞. Then, the problem (1.1)-(1.7) admits a unique global solution <a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M29','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M29">View MathML</a>such that for any T > 0,

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M30','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M30">View MathML</a>

(1.12)

2 Proof of Theorem 1.1

In this section, we study the global existence of problem (1.1)-(1.7) in <a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M31','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M31">View MathML</a> by establishing a series of priori estimates. Without loss of generality, we take cv = R = 1. We begin with the following lemma.

Lemma 2.1 Assume that the initial data <a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M32','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M32">View MathML</a>and e, p, and κ are C2 functions on 0 < v < +∞ and 0 ≤ θ < +∞ and there exists a positive constant C0 such that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M33','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M33">View MathML</a>

Then, for the initial data <a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M32','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M32">View MathML</a>, the problem (1.1) -(1.7) admits a unique global solution <a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M34','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M34">View MathML</a>such that for any T > 0

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M35','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M35">View MathML</a>

(2.1)

and for any t ∈ [0, T],

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M36','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M36">View MathML</a>

(2.2)

Proof. See, e.g., [16].

Lemma 2.2 Under the assumptions in Theorem 1.1, the following estimate holds:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M37','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M37">View MathML</a>

(2.3)

Proof. Differentiating (1.2) with respect to t, multiplying the resultant by ut, and then integrating the resulting equation over Qt : = Ω × [0, t], we infer

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M38">View MathML</a>

which implies

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M39','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M39">View MathML</a>

(2.4)

Analogously, we have

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M40','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M40">View MathML</a>

(2.5)

Thus, (2.3) follows from (2.4)-(2.5).

Lemma 2.3 Under the assumptions in Theorem 1.1, the following estimate holds:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M41','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M41">View MathML</a>

(2.6)

Proof. Equation (1.2) can be rewritten as

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M42','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M42">View MathML</a>

(2.7)

Using equation (2.7), Lemmas 2.1-2.2, Sobolev's embedding theorem and Young's inequality, we have

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M43','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M43">View MathML</a>

which leads to

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M44">View MathML</a>

(2.8)

Similarly, we derive

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M45','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M45">View MathML</a>

(2.9)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M46','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M46">View MathML</a>

(2.10)

Thus, (2.6) follows from (2.8)-(2.10).

Lemma 2.4 Under the assumptions in Theorem 1.1, the following estimate holds:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M47','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M47">View MathML</a>

(2.11)

Proof. Differentiating (1.2) with respect to y, we obtain

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M48','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M48">View MathML</a>

(2.12)

where

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M49','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M49">View MathML</a>

Multiplying (2.12) by <a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M50','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M50">View MathML</a>, integrating the resulting equation over Qt, and then using the Young inequality and interpolation theorem, we can conclude

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M51','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M51">View MathML</a>

which, together with Lemmas 2.1-2.3, yields (2.11).

Proof of Theorem 1.1. By Lemmas 2.1-2.4, we complete the proof of Theorem 1.1.

3 Proof of Theorem 1.2

In this section, we study the global existence of problem (1.1)-(1.7) in <a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M52','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M52">View MathML</a> by establishing a series of priori estimates. We begin with the following lemmas.

Lemma 3.1 Under the assumptions in Theorem 1.2, the following estimates hold:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M53','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M53">View MathML</a>

(3.1)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M54','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M54">View MathML</a>

(3.2)

Proof. We easily infer from (1.2), Lemma 2.1 and Theorems 1.1 that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M55','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M55">View MathML</a>

Differentiating (1.2) with respect to y, and using Theorem 1.1, we get

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M56','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M56">View MathML</a>

(3.3)

or

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M57','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M57">View MathML</a>

(3.4)

Differentiating (1.2) with respect to y twice, using the embedding theorem and Theorem 1.1, we conclude

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M58','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M58">View MathML</a>

(3.5)

or

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M59','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M59">View MathML</a>

(3.6)

Similarly, we have

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M60','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M60">View MathML</a>

(3.7)

or

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M61','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M61">View MathML</a>

(3.8)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M62','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M62">View MathML</a>

(3.9)

or

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M63','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M63">View MathML</a>

(3.10)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M64','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M64">View MathML</a>

(3.11)

or

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M65','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M65">View MathML</a>

(3.12)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M66','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M66">View MathML</a>

(3.13)

or

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M67','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M67">View MathML</a>

(3.14)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M68','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M68">View MathML</a>

(3.15)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M69','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M69">View MathML</a>

(3.16)

or

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M70','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M70">View MathML</a>

(3.17)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M71','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M71">View MathML</a>

(3.18)

or

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M72','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M72">View MathML</a>

(3.19)

Differentiating (1.2) with respect to t, and using Theorem 1.1, (3.3), (3.5), (3.11)-(3.12) and (3.16), we derive

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M73','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M73">View MathML</a>

(3.20)

Similarly, we can conclude

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M74','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M74">View MathML</a>

(3.21)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M75','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M75">View MathML</a>

(3.22)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M76','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M76">View MathML</a>

(3.23)

Thus, (3.1) follows from (3.3), (3.7), (3.11) and (3.16), and (3.2) from (3.5), (3.9), (3.13), (3.18) and (3.20)-(3.23).

Lemma 3.2 Under the assumptions in Theorem 1.2, the following estimates hold, for any t ∈ [0, T],

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M77','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M77">View MathML</a>

(3.24)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M78','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M78">View MathML</a>

(3.25)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M79','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M79">View MathML</a>

(3.26)

Proof. Differentiating (1.2) with respect to t twice, multiplying the resulting equation by utt, performing an integration by parts, and using Lemma 2.1, we have

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M80','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M80">View MathML</a>

(3.27)

Thus, using Theorem 1.1 and Lemma 3.1, we get

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M81','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M81">View MathML</a>

Analogously, we obtain

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M82','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M82">View MathML</a>

Equation (1.5) can be rewritten as

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M83','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M83">View MathML</a>

(3.28)

Differentiating (3.28) with respect to t twice, multiplying the resulting equation by θtt in L2 0[1] and integrating by parts, we arrive at

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M84','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M84">View MathML</a>

By virtue of Theorem 1.1 and Lemmas 3.1-3.2, using the embedding theorem, we deduce for any ε ∈ (0, 1),

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M85','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M85">View MathML</a>

and

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M86','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M86">View MathML</a>

which implies

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M87','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M87">View MathML</a>

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M88','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M88">View MathML</a>

which implies

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M89','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M89">View MathML</a>

Thus, for ε ∈ (0, 1) small enough, we derive from above estimates

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M90','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M90">View MathML</a>

(3.29)

Thus, taking supremum in t on the left-hand side of (3.29), picking ε ∈ (0, 1) small enough, and using (3.23), we can derive estimate (3.26).

Lemma 3.3 Under the assumptions in Theorem 1.2, the following estimates hold, for any t ∈ [0,T],

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M91','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M91">View MathML</a>

(3.30)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M92','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M92">View MathML</a>

(3.31)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M93','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M93">View MathML</a>

(3.32)

Proof. Differentiating (1.2) with respect to y and t, multiplying the resulting equation by uty, and integrating by parts, we arrive at

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M94','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M94">View MathML</a>

(3.33)

where

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M95','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M95">View MathML</a>

We use Theorem 1.1, Lemma 2.1, the interpolation inequality and Poincaré's inequality to obtain

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M96','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M96">View MathML</a>

(3.34)

where

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M97','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M97">View MathML</a>

Using the Young inequality several times, we derive

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M98','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M98">View MathML</a>

(3.35)

and

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M99','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M99">View MathML</a>

(3.36)

Thus, we infer from (3.34)-(3.36) that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M100','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M100">View MathML</a>

which, together with Theorem 1.1, Lemma 2.1, and Lemmas 3.1-3.2, yields

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M101','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M101">View MathML</a>

(3.37)

Similarly, by Theorem 1.1, Lemma 2.1, and Lemmas 3.1-3.2 and the embedding theorem, we have

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M102','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M102">View MathML</a>

(3.38)

which, combined with (3.33), (3.37)-(3.38), Theorem 1.1, Lemma 2.1, and Lemmas 3.1-3.2, gives that for ε ∈ (0, 1) small enough,

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M103','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M103">View MathML</a>

(3.39)

On the other hand, differentiating (1.2) with respect to x and t, using Theorem 1.1 and Lemmas 3.1-3.2, we have

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M104','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M104">View MathML</a>

(3.40)

Thus, inserting (3.40) into (3.39) implies estimate (3.30).

Analogously, we can obtain estimates (3.31)-(3.32). □

Lemma 3.4 Under the assumptions in Theorem 1.2, the following estimates hold for any t ∈ [0,T],

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M105','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M105">View MathML</a>

(3.41)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M106','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M106">View MathML</a>

(3.42)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M107','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M107">View MathML</a>

(3.43)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M108','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M108">View MathML</a>

(3.44)

Proof. Adding up (3.30)-(3.32), picking ε ∈ (0, 1) enough small, by Lemmas 3.1-3.3, and Gronwall's inequality, we get

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M109','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M109">View MathML</a>

(3.45)

Now multiplying (3.24)-(3.26) by ε, ε, and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M110','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M110">View MathML</a>, adding the resultant to (3.45), and choosing ε ∈ (0, 1) small enough, we obtain

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M111','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M111">View MathML</a>

which, by Gronwall's inequality, gives the estimate (3.41).

Differentiating (2.12) with respect to y, and using vtyy = uyyy, we obtain

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M112','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M112">View MathML</a>

(3.46)

with

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M113','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M113">View MathML</a>

Obviously, we can infer from Lemmas 3.1-3.3 that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M114','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M114">View MathML</a>

(3.47)

leading to

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M115','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M115">View MathML</a>

(3.48)

Multiplying (3.46) by <a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M116','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M116">View MathML</a>, we get

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M117','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M117">View MathML</a>

(3.49)

which, combined with (3.48), gives

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M118','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M118">View MathML</a>

(3.50)

By (3.4), (3.6), (3.8), (3.10), (3.12), (3.14), (3.17), (3.19), (3.41), (3.50), and Lemmas 3.1-3.3, and using the embedding theorem, we have

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M119','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M119">View MathML</a>

(3.51)

Differentiating (1.2)-(1.5) with respect to t, using (3.41) and Lemmas 3.1-3.3, we get

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M120','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M120">View MathML</a>

(3.52)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M121','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M121">View MathML</a>

(3.53)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M122','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M122">View MathML</a>

(3.54)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M123','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M123">View MathML</a>

(3.55)

which, combined with (3.6), (3.10), (3.14) and (3.19), yields

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M124','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M124">View MathML</a>

(3.56)

Therefore, it follows from (3.51), (3.56), and the embedding theorem, we obtain

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M125','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M125">View MathML</a>

(3.57)

Differentiating (3.46) with respect to y, we obtain

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M126','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M126">View MathML</a>

(3.58)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M127','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M127">View MathML</a>.

Using the embedding theorem and Lemmas 3.1-3.3, we can conclude

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M128','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M128">View MathML</a>

(3.59)

We infer from (3.20)-(3.23) that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M129','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M129">View MathML</a>

(3.60)

which, together with Lemma 3.3, gives

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M130','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M130">View MathML</a>

(3.61)

Thus, it follows from (3.40), (3.59), (3.61), and Lemmas 3.1-3.3 that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M131','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M131">View MathML</a>

(3.62)

Multiplying (3.58) by <a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M116','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M116">View MathML</a>, we get

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M132','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M132">View MathML</a>

(3.63)

whence by (3.62),

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M133','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M133">View MathML</a>

(3.64)

Differentiating (1.2) with respect to y there times, using Lemmas 3.1-3.3 and Poincaré's inequality, we have

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M134','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M134">View MathML</a>

(3.65)

Thus, we conclude from (1.2), (3.56), (3.61), (3.64), and (3.65) that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M135','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M135">View MathML</a>

(3.66)

Similarly, we can deduce from (1.3)-(1.5) that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M136','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M136">View MathML</a>

(3.67)

which, along with (3.51) and (3.66), gives

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M137','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/30/mathml/M137">View MathML</a>

(3.68)

Finally, using (1.1), (3.50)-(3.56), (3.64), (3.66)-(3.68), and Sobolev's interpolation inequality, we can get the desired estimates (3.42)-(3.44).

Proof of Theorem 1.2. By Lemma 2.1, Lemmas 3.1-3.4, and Theorem 1.1, we complete the proof of Theorem 1.2.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed to each part of this work equally.

Acknowledgements

The work in part was supported by the NNSF of China (No. 11031003) and the Doctoral Innovational Fund of Donghua University (No. BC20101220).

References

  1. Clermmow, PC, Dougherty, JP: Electrodynamics of Particles and Plasmas. Addison-Wesley, New York (1990)

  2. Woods, LC: Principle of Magnetoplasma Dynamics. Oxford University Press, New York (1987)

  3. Kazhikhov, AV: Sur la solubilité globale des problémes monodimensionnels aux valeurs initiales-limités pour les équations d'un gaz visqueux et calorifére. pp. 317–320. C R Acad Sci Paris (1977)

  4. Kazhikhov, AV: To a theory of boundary value problems for equations of one-dimensional nonstationary motion of viscous heat-conduction gases. pp. 37–62. Boundary Value Problems for Hydrodynamical Equations (in Russian) No. 50, Inst. Hydrodynamics, Siberian Branch Akad. USSR (1981)

  5. Kazhikhov, AV, Sheluhin, VV: Unique global solution with respect to time of the initial-boundary value problems for one-dimensional equations of a viscous gas. J Appl Math Mech. 41, 273–282 (1977). Publisher Full Text OpenURL

  6. Kawashima, S, Nishida, T: Global solutions to the initial value problem for the equations of one-dimensional motion of viscous polytropic gases. J Math Kyoto Univ. 21, 825–837 (1981)

  7. Zheng, S, Qin, Y: Universal attractor for the Navier-Stocks equations of compressible and heat-conductive fluid in bounded annular domains in ℝn. Arch Rat Mech Anal. 160, 153–179 (2001). Publisher Full Text OpenURL

  8. Kawohl, B: Global existence of large solutions to initial boundary value problems for the equations of one-dimensional motion of viscous polytropic gases. J Differ Equ. 58, 76–103 (1985). Publisher Full Text OpenURL

  9. Jiang, S: On initial boundary value problems for a viscous heat-conducting one-dimensional real gas. J Differ Equ. 110, 157–181 (1994). Publisher Full Text OpenURL

  10. Qin, Y: Nonlinear Parabolic-Hyperbolic Coupled Systems and Their Attractors. Operator Theory, Advances in PDEs, Basel, Boston-Berlin, Birkhäuser. 184, (2008)

  11. Ducomet, B: A model of thermal dissipation for a one-dimensional viscous reactive and radiative. Math Meth Appl Sci. 22, 1323–1349 (1999). Publisher Full Text OpenURL

  12. Umehara, M, Tani, A: Global solution to the one-dimensional equations for a self-gravitating viscous radiative and reactive gas. J Differ Equ. 234, 439–463 (2007). Publisher Full Text OpenURL

  13. Ducomet, B, Feireisl, E: The equations of magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars. Comm Math Phys. 266, 595–629 (2006). Publisher Full Text OpenURL

  14. Zhang, J, Xie, F: Global solution for a one-dimensional model problem in thermally radiative magnetohydrodynamics. J Differ Equ. 245, 1853–1882 (2008). Publisher Full Text OpenURL

  15. Chen, G-Q, Wang, D: Global solutions of nonlinear magnetohydrodynamics with large initial data. J Differ Equ. 182, 344–376 (2002). Publisher Full Text OpenURL

  16. Chen, G-Q, Wang, D: Existence and continuous dependence of large solutions for the magnetohydrodynamics equations. Z Angew Math Phys. 54, 608–632 (2003). Publisher Full Text OpenURL

  17. Hoff, D, Tsyganov, E: Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics. Z Angew Math Phys. 56, 791–840 (2005). Publisher Full Text OpenURL

  18. Fan, J, Jiang, S, Nakamura, G: Stability of weak solutions to equations of magnetohydro-dynamics with Lebesgue initial data. Preprint (2005)

  19. Fan, J, Jiang, S, Nakamura, G: Vanishing sheer viscosity limit in the magnetohydrodynamic equations. Comm Math Phys. 270, 691–708 (2007). Publisher Full Text OpenURL

  20. Ströhmer, G: About compressible viscous fluid flow in a bounded region. Pacific J Math. 143, 359–375 (1990)

  21. Vol'pert, AI, Hudjaev, SI: On the Cauchy problem for composite systems of nonlinear differential equations. Math USSR-Sb. 16, 517–544 (1972). Publisher Full Text OpenURL

  22. Wang, D: Large solutions to the initial-boundary value problem for planar magnetohydrodynamics. SIAM J Appl Math. 63, 1424–1441 (2003). Publisher Full Text OpenURL