SpringerOpen Newsletter

Receive periodic news and updates relating to SpringerOpen.

Open Access Open Badges Research

Uniqueness of the potential function for the vectorial Sturm-Liouville equation on a finite interval

Tsorng-Hwa Chang12 and Chung-Tsun Shieh1*

Author affiliations

1 Department of Mathematics, Tamkang University, No.151, Yingzhuan Rd., Danshui Dist., New Taipei City 25137, Taiwan, PR China

2 Department of Electronic Engineering, China University of Science and Technology, No.245, Academia Rd., Sec. 3, Nangang District, Taipei City 115, Taiwan, PR China

For all author emails, please log on.

Citation and License

Boundary Value Problems 2011, 2011:40  doi:10.1186/1687-2770-2011-40

Published: 26 October 2011


In this paper, the vectorial Sturm-Liouville operator <a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/40/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/40/mathml/M1">View MathML</a> is considered, where Q(x) is an integrable m × m matrix-valued function defined on the interval [0,π] The authors prove that m2+1 characteristic functions can determine the potential function of a vectorial Sturm-Liouville operator uniquely. In particular, if Q(x) is real symmetric, then <a onClick="popup('http://www.boundaryvalueproblems.com/content/2011/1/40/mathml/M2','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2011/1/40/mathml/M2">View MathML</a> characteristic functions can determine the potential function uniquely. Moreover, if only the spectral data of self-adjoint problems are considered, then m2 + 1 spectral data can determine Q(x) uniquely.

Inverse spectral problems; Sturm-Liouville equation