Skip to main content

Vanishing heat conductivity limit for the 2D Cahn-Hilliard-Boussinesq system

Abstract

This article studies the vanishing heat conductivity limit for the 2D Cahn-Hilliard-boussinesq system in a bounded domain with non-slip boundary condition. The result has been proved globally in time.

2010 MSC: 35Q30; 76D03; 76D05; 76D07.

1 Introduction

Let Ω 2 be a bounded, simply connected domain with smooth boundary ∂Ω, and n is the unit outward normal vector to ∂Ω. We consider the following Cahn-Hilliard-Boussinesq system in Ω × (0, ∞) [1]:

t u + ( u ) u + π - Δ u = μ ϕ + θ e 2 ,
(1.1)
div u = 0 ,
(1.2)
t θ + u θ = ε Δ θ ,
(1.3)
t ϕ + u ϕ = Δ μ ,
(1.4)
- Δ ϕ + f ( ϕ ) = μ ,
(1.5)
u = 0 , θ = 0 , ϕ n = μ n = 0 o n Ω × ( 0 , ) ,
(1.6)
( u , θ , ϕ ) ( x , 0 ) = ( u 0 , θ 0 , ϕ 0 ) ( x ) , x Ω ,
(1.7)

where u, π, θ and ϕ denote unknown velocity field, pressure scalar, temperature of the fluid and the order parameter, respectively. ε > 0 is the heat conductivity coefficient and e2 : = (0, 1) t . μ is a chemical potential and f ( ϕ ) := 1 4 ( ϕ 2 - 1 ) 2 is the double well potential.

When ϕ = 0, (1.1), (1.2) and (1.3) is the well-known Boussinesq system. In [2] Zhou and Fan proved a regularity criterion ω = ˙ curlu L 1 ( 0 , T ; , 0 ) for the 3D Boussinesq system with partial viscosity. Later, in [3] Zhou and Fan studied the Cauchy problem of certain Boussinesq-α equations in n dimensions with n = 2 or 3. We establish regularity for the solution under u L 1 ( 0 , T ; , 0 ) . Here , 0 denotes the homogeneous Besov space. Chae [4] studied the vanishing viscosity limit ε → 0 when Ω = 2. The aim of this article is to prove a similar result. We will prove that

Theorem 1.1. Let ( u 0 , θ 0 ) H 0 1 H 2 , ϕ0 H4, div u0 = 0 in Ω and ϕ 0 n = μ 0 n =0 on∂Ω. Then, there exists a positive constant C independent of ε such that

u ε L ( 0 , T ; H 2 ) C , θ ε L ( 0 , T ; H 2 ) C , ϕ ε L ( 0 , T ; H 4 ) C , t ( u ϵ , θ ε , ϕ ϵ ) L 2 ( 0 , T ; L 2 ) C ,
(1.8)

for any T > 0, which implies

( u ε , θ ε , ϕ ε ) ( u , θ , ϕ ) s t r o n g l y i n L 2 ( 0 , T ; H 1 ) w h e n ε 0 .
(1.9)

Here, (u, θ, ϕ) is the solution of the problem (1.1)-(1.7) with ε = 0.

2 Proof of Theorem 1.1

Since (1.9) follows easily from (1.8) by the Aubin-Lions compactness principle, we only need to prove the a priori estimates (1.8). From now on, we will drop the subscript ε and throughout this section C will be a constant independent of ε.

First, by the maximum principle, it follows from (1.2), (1.3), and (1.6) that

θ L ( 0 , T ; L ) θ 0 L C .
(2.1)

Testing (1.3) by θ, using (1.2) and (1.6), we see that

1 2 d d t θ 2 d x + ε θ 2 d x = 0 ,

whence

ε θ L 2 ( 0 , T ; H 1 ) C .
(2.2)

Testing (1.1) and (1.4) by u and μ, respectively, using (1.2), (1.6), (2.1), and summing up the result, we find that

d d t 1 2 u 2 + 1 2 ϕ 2 + f ( ϕ ) d x + u 2 + μ 2 d x = θ e 2 u d x θ L 2 u L 2 C u L 2 ,

which gives

ϕ L ( 0 , T ; H 1 ) C ,
(2.3)
u L ( 0 , T ; L 2 ) + u L 2 ( 0 , T ; H 1 ) C ,
(2.4)
μ L 2 ( 0 , T ; L 2 ) C .
(2.5)

Testing (1.4) by ϕ, using (1.2), (1.5) and (1.6), we infer that

1 2 d d t ϕ 2 d x + Δ ϕ 2 d x = ( ϕ 3 - ϕ ) Δ ϕ d x = - 3 ϕ 2 ϕ 2 d x - ϕ Δ ϕ d x - ϕ Δ ϕ d x 1 2 Δ ϕ 2 d x + 1 2 ϕ 2 d x ,

which leads to

ϕ L 2 ( 0 , T ; H 2 ) C .
(2.6)

We will use the following Gagliardo-Nirenberg inequality:

ϕ L 2 C ϕ L 6 ϕ H 2 .
(2.7)

It follows from (2.6), (2.7), (2.5), (2.3) and (1.5) that

0 T Δ ϕ 2 d x d t = 0 T ( f ( ϕ ) - μ ) 2 d x d t C 0 T μ 2 d x d t + C 0 T ( ϕ 3 - ϕ ) 2 d x d t C + C 0 T ϕ 4 ϕ 2 d x d t C + C ϕ L ( 0 , T ; L 2 ) 2 0 T ϕ L 4 d t C + C 0 T ϕ L 6 2 ϕ H 2 2 d t C + C ϕ L ( 0 , T ; H 1 ) 2 0 T ϕ H 2 2 d t C ,
(2.8)

which yields

ϕ L 2 ( 0 , T ; H 3 ) C ,
(2.9)
ϕ L 4 ( 0 , T ; L ) C,
(2.10)
ϕ L 2 ( 0 , T ; L ) C .
(2.11)

Testing (1.4) by Δ2ϕ, using (1.5), (2.4), (2.3), (2.10) and (2.11), we derive

1 2 d d t Δ ϕ 2 d x + Δ 2 ϕ 2 d x = - u ϕ Δ 2 ϕ d x + Δ ( ϕ 3 - ϕ ) Δ 2 ϕ d x u L 2 ϕ L Δ 2 ϕ L 2 + Δ ( ϕ 3 - ϕ ) L 2 Δ 2 ϕ L 2 C ϕ L Δ 2 ϕ L 2 + C ( ϕ L 2 Δ ϕ L 2 + ϕ L ϕ L ϕ L 2 + Δ ϕ L 2 ) Δ 2 ϕ L 2 C ϕ L Δ 2 ϕ L 2 + C ( ϕ L 2 Δ ϕ L 2 + ϕ H 2 ϕ L + Δ ϕ L 2 ) Δ 2 ϕ L 2 1 2 Δ 2 ϕ L 2 2 + C ϕ L 2 + C ϕ L 4 Δ ϕ L 2 2 + C ϕ L 2 ϕ H 2 2 + C Δ ϕ L 2 2 ,

which implies

ϕ L ( 0 , T ; H 2 ) + ϕ L 2 ( 0 , T ; H 4 ) C .
(2.12)

Testing (1.1) by -Δu + π, using (1.2), (1.6), (2.12), (2.1) and (2.4), we reach

1 2 d d t u 2 d x + ( - Δ u + π ) 2 d x = ( μ ϕ + θ e 2 - u u ) ( - Δ u + π ) d x ( μ L 2 ϕ L + θ L 2 + u L 4 u L 4 ) - Δ u + π L 2 C ( ϕ L + 1 + u L 2 1 2 u L 2 1 2 u L 2 1 2 Δ u L 2 1 2 ) - Δ u + π L 2 C ϕ L 2 + C + C u L 2 4 + 1 2 - Δ u + π L 2 2 ,

which yields

u L ( 0 , T ; H 1 ) + u L 2 ( 0 , T ; H 2 ) C .
(2.13)

Here, we have used the Gagliardo-Nirenberg inequalities:

u L 4 2 C u L 2 u L 2 , u L 4 2 C u L 2 u H 2 ,

and the H2-theory of the Stokes system:

u H 2 + π H 1 C - Δ u + π L 2 .
(2.14)

Similarly to (2.13), we have

t u L 2 ( 0 , T ; L 2 ) C .
(2.15)

(1.1), (1.2), (1.6) and (1.7) can be rewritten as

t u - Δ u + π = g : = μ ϕ + θ e 2 - u u , i n Ω × ( 0 , ) , u = 0 , o n Ω × ( 0 , ) , u ( x , 0)  =  u 0 ( x ) .

Using (2.12), (2.1), (2.13), and the regularity theory of Stokes system, we have

t u L 2 ( 0 , T ; L p ) + u L 2 ( 0 , T ; W 2 , p ) C g L 2 ( 0 , T ; L p ) C μ L 2 ( 0 , T ; L ) ϕ L ( 0 , T ; L p ) + C θ L ( 0 , T ; L ) + C u L ( 0 , T ; L 2 p ) u L 2 ( 0 , T ; L 2 p ) C ,
(2.16)

for any 2 < p < ∞.

(2.16) gives

u L 2 ( 0 , T ; L ) C .
(2.17)

It follows from (1.3) and (1.6) that

Δ θ = 0 o n Ω × ( 0 , ) .
(2.18)

Applying Δ to (1.3), testing by Δθ, using (1.2), (1.6), (2.16), (2.17) and (2.18), we obtain

1 2 d d t Δ θ 2 d x + ε Δ θ 2 d x = - ( Δ ( u θ ) - u Δ θ ) Δ θ d x C ( Δ u L 4 θ L 4 + u L Δ θ L 2 ) Δ θ L 2 C ( Δ u L 4 + u L ) Δ θ L 2 2 ,

which implies

θ L ( 0 , T ; H 2 ) + ε θ L 2 ( 0 , T ; H 3 ) C .
(2.19)

It follows from (1.3), (1.6), (2.19) and (2.13) that

t θ L ( 0 , T ; L 2 ) C .
(2.20)

Taking ∂ t to (1.4) and (1.5), testing by ∂ t ϕ, using (1.2), (1.6), (2.12), and (2.15), we have

1 2 d d t t ϕ 2 d x + Δ t ϕ 2 d x = - t u ϕ t ϕ d x + Δ ( 3 ϕ 2 t ϕ - t ϕ ) t ϕ d x = - t u ϕ t ϕ d x + ( 3 ϕ 2 t ϕ - t ϕ ) Δ t ϕ d x t u L 2 ϕ L t ϕ L 2 + ( 3 ϕ L 2 + 1 ) t ϕ L 2 Δ t ϕ L 2 t u L 2 ϕ L t ϕ L 2 + 1 2 Δ t ϕ L 2 2 + C t ϕ L 2 2 ,

which gives

t ϕ L ( 0 , T ; L 2 ) + t ϕ L 2 ( 0 , T ; H 2 ) C .
(2.21)

By the regularity theory of elliptic equation, it follows from (1.4), (1.5), (1.6), (2.21), (2.13) and (2.12) that

ϕ L ( 0 , T ; H 4 ) C Δ ϕ L ( 0 , T ; H 2 ) C μ - f ( ϕ ) L ( 0 , T ; H 2 ) C μ L ( 0 , T ; H 2 ) + C f ( ϕ ) L ( 0 , T ; H 2 ) C Δ μ L ( 0 , T ; L 2 ) + C f ( ϕ ) L ( 0 , T ; H 2 ) C t ϕ + u ϕ L ( 0 , T ; L 2 ) + C f ( ϕ ) L ( 0 , T ; H 2 ) C t ϕ L ( 0 , T ; L 2 ) + C u L ( 0 , T ; L 4 ) ϕ L ( 0 , T ; L 4 ) + C f ( ϕ ) L ( 0 , T ; H 2 ) C .
(2.22)

Taking ∂ t to (1.1), testing by ∂ t u, using (1.2), (1.6), (2.17), (2.22), (2.21) and (1.5), we conclude that

1 2 d d t t u 2 d x + t u 2 d x = - t u u t u d x + ( t μ ϕ + μ t ϕ + t θ e 2 ) t u d x u L t u L 2 2 + ( t u L 2 ϕ L + μ L t ϕ L 2 + t θ L 2 ) t u L 2 u L t u L 2 2 + C ( Δ t ϕ L 2 + t ( ϕ 3 - ϕ ) L 2 + t ϕ L 2 + 1 ) t u L 2 ,

which implies

t u L ( 0 , T ; L 2 ) + t u L 2 ( 0 , T ; H 1 ) C .
(2.23)

Using (2.23), (2.22), (2.1), (2.13), (1.1), (1.2), (1.6) and the H2-theory of the Stokes system, we arrive at

u L ( 0 , T ; H 2 ) C .

This completes the proof.

References

  1. Boyer Franck: Mathematical study of multi-phase flow under shear through order parameter formulation. Asymptot Anal 1999, 20: 175-212.

    MathSciNet  Google Scholar 

  2. Fan Jishan, Zhou Yong: A note on regularity criterion for the 3D Boussinesq system with partial viscosity. Appl Math Lett 2009, 22: 802-805. 10.1016/j.aml.2008.06.041

    Article  MathSciNet  Google Scholar 

  3. Zhou Yong, Fan Jishan: On the Cauchy problems for certain Boussinesq- α equations. Proc R Soc Edinburgh Sect A 2010, 140: 319-327. 10.1017/S0308210509000122

    Article  MathSciNet  Google Scholar 

  4. Chae Dongho: Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv Math 2006, 203: 497-513. 10.1016/j.aim.2005.05.001

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This study was supported by the NSFC (No. 11171154) and NSFC (Grant No. 11101376).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaihong Jiang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Jiang, Z., Fan, J. Vanishing heat conductivity limit for the 2D Cahn-Hilliard-Boussinesq system. Bound Value Probl 2011, 54 (2011). https://doi.org/10.1186/1687-2770-2011-54

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-2770-2011-54

Keywords