Open Access Research Article

Minimal Nonnegative Solution of Nonlinear Impulsive Differential Equations on Infinite Interval

Xuemei Zhang1*, Xiaozhong Yang1 and Meiqiang Feng2

Author Affiliations

1 Department of Mathematics and Physics, North China Electric Power University, Beijing 102206, China

2 School of Applied Science, Beijing Information Science and Technology University, Beijing 100192, China

For all author emails, please log on.

Boundary Value Problems 2011, 2011:684542  doi:10.1155/2011/684542

Published: 2 August 2010


The cone theory and monotone iterative technique are used to investigate the minimal nonnegative solution of nonlocal boundary value problems for second-order nonlinear impulsive differential equations on an infinite interval with an infinite number of impulsive times. All the existing results obtained in previous papers on nonlocal boundary value problems are under the case of the boundary conditions with no impulsive effects or the boundary conditions with impulsive effects on a finite interval with a finite number of impulsive times, so our work is new. Meanwhile, an example is worked out to demonstrate the main results.