Resolution:
## Figure 5.
Embedding the boundary of the orbit space. M is a 3-manifold with rotational symmetry. A is a symmetry cell, i.e., the image of the orbit space N under a cross-section κ. The boundary ∂N consists of parts E and S whose points correspond to the points in ∂M and in the axis of rotation, respectively. iand _{E }iare the inclusion maps of _{S }E and S into N, and κembeds _{E }E into ∂M.
Raumonen |