Skip to main content

Multiple positive solutions for semilinear elliptic systems involving subcritical nonlinearities in R N

Abstract

In this paper, we investigate the effect of the coefficient f(x) of the subcritical nonlinearity. Under some assumptions, for sufficiently small ε,λ,μ>0, there are at least k (≥1) positive solutions of the semilinear elliptic systems

{ ε 2 Δ u ¯ + u ¯ = λ g ( x ) | u ¯ | q 2 u ¯ + α α + β f ( x ) | u ¯ | α 2 u ¯ | v ¯ | β in  R N ; ε 2 Δ v ¯ + v ¯ = μ h ( x ) | v ¯ | q 2 v ¯ + β α + β f ( x ) | u ¯ | α | v ¯ | β 2 v ¯ in  R N ; u ¯ , v ¯ H 1 ( R N ) ,

where α>1, β>1, 2<q<p=α+β< 2 =2N/(N2) for N3.

MSC:35J20, 35J25, 35J65.

1 Introduction

For N3, α>1, β>1 and 2<q<p=α+β< 2 =2N/(N2), we consider the semilinear elliptic systems

where ε,λ,μ>0.

Let f, g and h satisfy the following conditions:

(A1) f is a positive continuous function in R N and lim | x | f(x)= f >0.

(A2) there exist k points a 1 , a 2 ,, a k in R N such that

f ( a i ) = max x R N f(x)=1for 1ik,

and f <1.

(A3) g,h L m ( R N ) L ( R N ) where m=(α+β)/(α+βq), and g,h0.

In [1], if Ω is a smooth and bounded domain in R N (N3), they considered the following system:

{ ε 2 Δ u ¯ λ 1 u ¯ = μ 1 u ¯ 3 + β u ¯ v ¯ 2 in  Ω ; ε 2 Δ v ¯ λ 2 v ¯ = μ 2 v ¯ 3 + β u ¯ 2 v ¯ in  Ω ; u ¯ > 0 , v ¯ > 0 ,

and proved the existence of a least energy solution in Ω for sufficiently small ε>0 and β(, β 0 ). Lin and Wei also showed that this system has a least energy solution in R N for ε=1 and β(0, β 0 ). In this paper, we study the effect of f(z) of ( E ¯ ε , λ , μ ). Recently, many authors [25] considered the elliptic systems with subcritical or critical exponents, and they proved the existence of a least energy positive solution or the existence of at least two positive solutions for these problems. In this paper, we construct the k compact Palais-Smale sequences which are suitably localized in correspondence of k maximum points of f. Then we could show that under some assumptions (A1)-(A3), for sufficiently small ε,λ,μ>0, there are at least k (≥1) positive solutions of the elliptic system ( E ε , λ , μ ). By the change of variables

x=εz,u(z)= u ¯ (εz)andv(z)= v ¯ (εz),

System ( E ¯ ε , λ , μ ) is transformed to

Let H= H 1 ( R N )× H 1 ( R N ) be the space with the standard norm

( u , v ) H = [ R N ( | u | 2 + u 2 ) d z + R N ( | v | 2 + v 2 ) d z ] 1 / 2 .

Associated with the problem ( E ε , λ , μ ), we consider the C 1 -functional J ε , λ , μ , for (u,v)H,

J ε , λ , μ ( u , v ) = 1 2 ( u , v ) H 2 1 α + β R N f ( ε z ) | u | α | v | β d z 1 q R N ( λ g ( ε z ) | u | q + μ h ( ε z ) | v | q ) d z .

Actually, the weak solution (u,v)H of ( E ε , λ , μ ) is the critical point of the functional J ε , λ , μ , that is, (u,v)H satisfies

for any ( φ 1 , φ 2 )H.

We consider the Nehari manifold

M ε , λ , μ = { ( u , v ) H { ( 0 , 0 ) } | J ε , λ , μ ( u , v ) , ( u , v ) = 0 } ,
(1.1)

where

J ε , λ , μ ( u , v ) , ( u , v ) = ( u , v ) H 2 R N f(εz)|u | α |v | β dz R N ( λ g ( ε z ) | u | q + μ h ( ε z ) | v | q ) dz.

The Nehari manifold M ε , λ , μ contains all nontrivial weak solutions of ( E ε , λ , μ ).

Let

S α , β = inf u , v H 1 ( R N ) { ( 0 ) } ( u , v ) H 2 ( R N | u | α | v | β d z ) 2 / ( α + β ) ,
(1.2)

then by [[2], Theorem 5], we have

S α , β = [ ( α β ) β α + β + ( β α ) α α + β ] S p ,

where p=α+β and S p is the best Sobolev constant defined by

S p = inf u H 1 ( R N ) { 0 } R N ( | u | 2 + u 2 ) d z ( R N | u | p d z ) 2 / p .

For the semilinear elliptic systems (λ=μ=0)

we define the energy functional I ε (u,v)= 1 2 ( u , v ) H 2 1 α + β R N f(εz)|u | α |v | β dz, and

N ε = { ( u , v ) H { ( 0 , 0 ) } | I ε ( u , v ) , ( u , v ) = 0 } .

If f max z R N f(z) (=1), then we define I max (u,v)= 1 2 ( u , v ) H 2 1 α + β R N |u | α |v | β dz and

θ max = inf ( u , v ) N max I max (u,v),

where N max ={(u,v)H{(0,0)}| I max (u,v),(u,v)=0}.

It is well known that this problem

has the unique, radially symmetric and positive ground state solution w H 1 ( R N ). Define I ¯ max (u)= 1 2 R N (|u | 2 + u 2 )dz 1 p R N |u | p dz and θ ¯ max = inf u N ¯ max I ¯ max (u), where

N ¯ max = { u H 1 ( R N ) { 0 } | I ¯ max ( u ) , u = 0 } .

Moreover, we have that

θ ¯ max = p 2 2 p S p p p 2 >0.(See Wang [6, Theorems 4.12 and 4.13].)

This paper is organized as follows. First of all, we study the argument of the Nehari manifold M ε , λ , μ . Next, we prove that the existence of a positive solution ( u 0 , v 0 ) M ε , λ , μ of ( E ε , λ , μ ). Finally, in Section 4, we show that the condition (A2) affects the number of positive solutions of ( E ε , λ , μ ); that is, there are at least k critical points ( u i , v i ) M ε , λ , μ of J ε , λ , μ such that J ε , λ , μ ( u i , v i )= β ε , λ , μ i ((PS)-value) for 1ik.

Theorem 1.1 ( E ε , λ , μ ) has at least one positive solution ( u 0 , v 0 ), that is, ( E ¯ ε , λ , μ ) admits at least one positive solution.

Theorem 1.2 There exist two positive numbers ε 0 and Λ such that ( E ε , λ , μ ) has at least k positive solutions for any 0<ε< ε 0 and 0<λ+μ< Λ , that is, ( E ¯ ε , λ , μ ) admits at least k positive solutions.

2 Preliminaries

By studying the argument of Han [[7], Lemma 2.1], we obtain the following lemma.

Lemma 2.1 Let Ω R N (possibly unbounded) be a smooth domain. If u n u, v n v weakly in H 0 1 (Ω), and u n u, v n v almost everywhere in Ω, then

lim n Ω | u n u | α | v n v | β dz= lim n Ω | u n | α | v n | β dz Ω |u | α |v | β dz.

Note that J ε , λ , μ is not bounded from below in H. From the following lemma, we have that J ε , λ , μ is bounded from below on M ε , λ , μ .

Lemma 2.2 The energy functional J ε , λ , μ is bounded from below on M ε , λ , μ .

Proof For (u,v) M ε , λ , μ , by (1.1), we obtain that

J ε , λ , μ (u,v)= ( 1 2 1 q ) ( u , v ) H 2 + ( 1 q 1 p ) R N f(εz)|u | α |v | β dz>0,

where p=α+β. Hence, we have that J ε , λ , μ is bounded from below on M ε , λ , μ . □

We define

θ ε , λ , μ = inf ( u , v ) M ε , λ , μ J ε , λ , μ (u,v).

Lemma 2.3 (i) There exist positive numbers σ and d 0 such that J ε , λ , μ (u,v) d 0 for ( u , v ) H =σ;

  1. (ii)

    There exists ( u ¯ , v ¯ )H{(0,0)} such that ( u ¯ , v ¯ ) H >σ and J ε , λ , μ ( u ¯ , v ¯ )<0.

Proof (i) By (1.2), the Hölder inequality ( p 1 = p p q , p 2 = p q ) and the Sobolev embedding theorem, we have that

J ε , λ , μ ( u , v ) = 1 2 ( u , v ) H 2 1 p R N f ( ε z ) | u | α | v | β d z 1 q R N ( λ g ( ε z ) | u | q + μ h ( ε z ) | v | q ) d z 1 2 ( u , v ) H 2 1 p S α , β p / 2 ( u , v ) H p 1 q Max S p q 2 ( λ + μ ) ( u , v ) H q ,

where p=α+β and Max=max{ g m , h m }. Hence, there exist positive σ and d 0 such that J ε , λ , μ (u,v) d 0 for ( u , v ) H =σ.

  1. (ii)

    For any (u,v)H{(0,0)}, since

    J ε , λ , μ ( t u , t v ) = t 2 2 ( u , v ) H 2 t p p R N f ( ε z ) | u | α | v | β d z t q q R N ( λ g ( ε z ) | u | q + μ h ( ε z ) | v | q ) d z ,

then lim t J ε , λ , μ (tu,tv)=. Fix some (u,v)H{(0,0)}, there exists t ¯ >0 such that ( t ¯ u , t ¯ v ) H >σ and J ε , λ , μ ( t ¯ u, t ¯ v)<0. Let ( u ¯ , v ¯ )=( t ¯ u, t ¯ v). □

Define

ψ(u,v)= J ε , λ , μ ( u , v ) , ( u , v ) .

Then for (u,v) M ε , λ , μ , we obtain that

ψ ( u , v ) , ( u , v ) = 2 ( u , v ) H 2 p R N f ( ε z ) | u | α | v | β d z q R N ( λ g ( ε z ) | u | q + μ h ( ε z ) | v | q ) d z = ( p q ) R N ( λ g ( ε z ) | u | q + μ h ( ε z ) | v | q ) d z ( p 2 ) ( u , v ) H 2
(2.1)
=(2q) ( u , v ) H 2 +(qp) R N f(εz)|u | α |v | β dz<0.
(2.2)

Lemma 2.4 For each (u,v)H{(0,0)}, there exists a unique positive number t u , v such that ( t u , v u, t u , v v) M ε , λ , μ and J ε , λ , μ ( t u , v u, t u , v v)= sup t 0 J ε , λ , μ (tu,tv).

Proof Fixed (u,v)H{(0,0)}, we consider

R ( t ) = J ε , λ , μ ( t u , t v ) = t 2 2 ( u , v ) H 2 t p p R N f ( ε z ) | u | α | v | β d z t q q R N ( λ g ( ε z ) | u | q + μ h ( ε z ) | v | q ) d z .

Since R(0)=0, lim t R(t)=, by Lemma 2.3(i), then sup t 0 R(t) is achieved at some t u , v >0. Moreover, we have that R ( t u , v )=0, that is, ( t u , v u, t u , v v) M ε , λ , μ . Next, we claim that t u , v is a unique positive number such that R ( t u , v )=0. Consider

r(t)= ( u , v ) H 2 t p 2 R N f(εz)|u | α |v | β dz t q 2 R N ( λ g ( ε z ) | u | q + μ h ( ε z ) | v | q ) dz,

then R (t)=tr(t). Since r(0)= ( u , v ) H 2 >0,

r ( t ) = ( p 2 ) t p 3 R N f ( ε z ) | u | α | v | β d z ( q 2 ) t q 3 R N ( λ g ( ε z ) | u | q + μ h ( ε z ) | v | q ) d z < 0 ,

there exists a unique positive number t ¯ u , v such that r( t ¯ u , v )=0. It follows that R ( t ¯ u , v )=0. Hence, t ¯ u , v = t u , v . □

Remark 2.5 By Lemma 2.3(i) and Lemma 2.4, then θ ε , λ , μ d 0 >0 for some constant d 0 .

Lemma 2.6 Let ( u 0 , v 0 ) M ε , λ , μ satisfy

J ε , λ , μ ( u 0 , v 0 )= min ( u , v ) M ε , λ , μ J ε , λ , μ (u,v)= θ ε , λ , μ ,

then ( u 0 , v 0 ) is a solution of ( E ε , λ , μ ).

Proof By (2.2), ψ (u,v),(u,v)<0 for (u,v) M ε , λ , μ . Since J ε , λ , μ ( u 0 , v 0 )= min ( u , v ) M ε , λ , μ J ε , λ , μ (u,v), by the Lagrange multiplier theorem, there is τR such that J ε , λ , μ ( u 0 , v 0 )=τ ψ ( u 0 , v 0 ) in H 1 . Then we have

0= J ε , λ , μ ( u 0 , v 0 ) , ( u 0 , v 0 ) =τ ψ ( u 0 , v 0 ) , ( u 0 , v 0 ) .

It follows that τ=0 and J ε , λ , μ ( u 0 , v 0 )=0 in H 1 . Therefore, ( u 0 , v 0 ) is a nontrivial solution of ( E ε , λ , μ ) and J ε , λ , μ ( u 0 , v 0 )= θ ε , λ , μ . □

3 (PS) γ -condition in H for J ε , λ , μ

First of all, we define the Palais-Smale (denoted by (PS)) sequence and (PS)-condition in H for some functional J.

Definition 3.1 (i) For γR, a sequence {( u n , v n )} is a (PS) γ -sequence in H for J if J( u n , v n )=γ+ o n (1) and J ( u n , v n )= o n (1) strongly in H 1 as n, where H 1 is the dual space of H;

  1. (ii)

    J satisfies the (PS) γ -condition in H if every (PS) γ -sequence in H for J contains a convergent subsequence.

Applying Ekeland’s variational principle and using the same argument as in Cao-Zhou [8] or Tarantello [9], we have the following lemma.

Lemma 3.2 (i) There exists a (PS)-sequence {( u n , v n )} in M ε , λ , μ for J ε , λ , μ .

In order to prove the existence of positive solutions, we want to prove that J ε , λ , μ satisfies the (PS) γ -condition in H for γ(0, p 2 2 p ( S α , β ) p / ( p 2 ) ( f ) 2 / ( p 2 ) ).

Lemma 3.3 J ε , λ , μ satisfies the (PS) γ -condition in H for γ(0, p 2 2 p ( S α , β ) p / ( p 2 ) ( f ) 2 / ( p 2 ) ).

Proof Let {( u n , v n )} be a (PS) γ -sequence in H for J ε , λ , μ such that J ε , λ , μ ( u n , v n )=γ+ o n (1) and J ε , λ , μ ( u n , v n )= o n (1) in H 1 . Then

γ + c n + d n ( u n , v n ) H q J ε , λ , μ ( u n , v n ) 1 q J ε , λ , μ ( u n , v n ) , ( u n , v n ) = ( 1 2 1 q ) ( u n , v n ) H 2 + ( 1 q 1 p ) R N f ( ε z ) | u n | α | v n | β d z q 2 2 q ( u n , v n ) H 2 ,

where c n = o n (1), d n = o n (1) as n. It follows that {( u n , v n )} is bounded in H. Hence, there exist a subsequence {( u n , v n )} and (u,v)H such that

Moreover, we have that J ε , λ , μ (u,v)=0 in H 1 . We use the Brézis-Lieb lemma to obtain (3.1) and (3.2) as follows:

(3.1)
(3.2)

Next, we claim that

R N g(εz)| u n u | q dz0as n
(3.3)

and

R N h(εz)| v n v | q dz0as n.
(3.4)

Since g L m ( R N ), where m=p/(pq), then for any σ>0, there exists r>0 such that [ B r N ( 0 ) ] c g ( ε z ) p p q dz<σ. By the Hölder inequality and the Sobolev embedding theorem, we get

Similarly, R N h(εz)| v n v | q dz0 as n. By (A1) and u n u, v n v strongly in L loc p ( R N ), we have that

R N f(εz)| u n u | α | v n v | β dz= R N f | u n u | α | v n v | β dz= o n (1).
(3.5)

Let p n =( u n u, v n v). By (3.1)-(3.4) and Lemma 2.1, we deduce that

p n H 2 = ( u n H 2 + v n H 2 ) ( u H 2 + v H 2 ) + o n ( 1 ) = R N f ( ε z ) | u n | α | v n | β d z + R N ( λ g ( ε z ) | u n | q + μ h ( ε z ) | v n | q ) d z R N f ( ε z ) | u | α | v | β d z R N ( λ g ( ε z ) | u | q + μ h ( ε z ) | v | q ) d z + o n ( 1 ) = R N f ( ε z ) | u n u | α | v n v | β d z + o n ( 1 ) ,

and

1 2 p n H 2 1 α + β R N f(εz)| u n u | α | v n v | β dz=γ J ε , λ , μ (u,v)+ o n (1).
(3.6)

We may assume that

p n H 2 land R N f(εz)| u n u | α | v n v | β dzlas n.
(3.7)

Recall that

S α , β = inf u , v H 1 ( R N ) { ( 0 ) } ( u , v ) H 2 ( R N | u | α | v | β d z ) 2 / p ,where p=α+β.

If l>0, by (3.5), then

S α , β l 2 p = S α , β ( R N f ( ε z ) | u n u | α | v n v | β d z ) 2 / p + o n ( 1 ) = S α , β ( R N f | u n u | α | v n v | β d z ) 2 / p + o n ( 1 ) ( f ) 2 / p p n H 2 + o n ( 1 ) = ( f ) 2 / p l .

This implies l ( S α , β ) p / ( p 2 ) / ( f ) 2 / ( p 2 ) . By (3.6) and (3.7), we obtain that

γ= ( 1 2 1 p ) l+ J ε , λ , μ (u,v) p 2 2 p ( S α , β ) p / ( p 2 ) ( f ) 2 / ( p 2 ) ,

which is a contradiction. Hence, l=0, that is, ( u n , v n )(u,v) strongly in H. □

4 Existence of k solutions

Let w H 1 ( R N ) be the unique, radially symmetric and positive ground state solution of equation (E 0) in R N . Recall the facts (or see Bahri-Li [10], Bahri-Lions [11], Gidas-Ni-Nirenberg [12] and Kwong [13]):

  1. (i)

    w L ( R N ) C loc 2 , θ ( R N ) for some 0<θ<1 and lim | z | w(z)=0;

  2. (ii)

    for any ε>0, there exist positive numbers C 1 , C 2 ε and C 3 ε such that for all z R N

    C 2 ε exp ( ( 1 + ε ) | z | ) w(z) C 1 exp ( | z | )

and

|w(z)| C 3 ε exp ( ( 1 ε ) | z | ) .

By Lien-Tzeng-Wang [14], then

S p = R N ( | w | 2 + w 2 ) d z ( R N w p d z ) 2 / p .
(4.1)

For 1ik, we define

w ε i (z)=w ( z a i ε ) ,where f ( a i ) = max z R N f(z)=1.

Clearly, w ε i (z) H 1 ( R N ).

First of all, we want to prove that

lim ε 0 + sup t 0 J ε , λ , μ ( t α w ε i , t β w ε i ) p 2 2 p ( S α , β ) p / ( p 2 ) uniformly in i.

Lemma 4.1 For λ>0 and μ>0, then

lim ε 0 + sup t 0 J ε , λ , μ ( t α w ε i , t β w ε i ) p 2 2 p ( S α , β ) p / ( p 2 ) uniformly in i.

Moreover, we have that

0< θ ε , λ , μ p 2 2 p ( S α , β ) p / ( p 2 ) .

Proof Part I: Since J ε , λ , μ is continuous in H, J ε , λ , μ (0,0)=0, and {( α w ε i , β w ε i )} is uniformly bounded in H for any ε>0 and 1ik, then there exists t 0 >0 such that for 0t< t 0 and any ε>0,

J ε , λ , μ ( t α w ε i , t β w ε i ) < p 2 2 p ( S α , β ) p / ( p 2 ) uniformly in i.

From (A1), we have that inf z R N f(z)>0. Then

J ε , λ , μ ( t α w ε i , t β w ε i ) t 2 2 ( α w , β w ) H 2 t α + β α + β ( inf z R N f ( z ) ) R N | α w | α | β w | β d z as  t .

It follows that there exists t 1 >0 such that for t> t 1 and any ε>0,

J ε , λ , μ ( t α w ε i , t β w ε i ) < p 2 2 p ( S α , β ) p / ( p 2 ) uniformly in i.

From now on, we only need to show that

lim ε 0 + sup t 0 t t 1 J ε , λ , μ ( t w ε i ) p 2 2 p ( S α , β ) p / ( p 2 ) uniformly in i.

Since

sup t 0 ( t 2 2 a t α + β α + β b ) = α + β 2 2 ( α + β ) ( a b 2 α + β ) α + β α + β 2 ,where a,b>0,

and by (4.1), then

(4.2)

For t 0 t t 1 , by (4.2), we have that

J ε , λ , μ ( t α w ε i , t β w ε i ) = t 2 2 ( α w ε i , β w ε i ) H 2 t α + β α + β R N f ( ε z ) | α w ε i | α | β w ε i | β d z t q q R N ( λ g ( ε z ) | α w ε i | q + μ h ( ε z ) | β w ε i | q ) d z p 2 2 p ( S α , β ) p / ( p 2 ) + t 1 p p R N ( 1 f ( ε z ) ) | α w ε i | α | α w ε i | β d z .

Since

then

lim ε 0 + sup t 0 t t 1 J ε , λ , μ ( t α w ε i , t β w ε i ) p 2 2 p ( S α , β ) p / ( p 2 ) ,

that is, for λ>0 and μ>0,

lim ε 0 + sup t 0 J ε , λ , μ ( t α w ε i , t β w ε i ) p 2 2 p ( S α , β ) p / ( p 2 ) uniformly in i.

Part II: By Lemma 2.4, there is a number t ε i >0 such that ( t ε i α w ε i , t ε i β w ε i ) M ε , λ , μ , where 1ik. Hence, from the result of Part I, we have that for λ>0 and μ>0,

0< θ ε , λ , μ lim ε 0 + sup t 0 J ε , λ , μ ( t α w ε i , t β w ε i ) p 2 2 p ( S α , β ) p / ( p 2 ) .

 □

Proof of Theorem 1.1 By Lemma 3.2, there exists a (PS)-sequence {( u n , v n )} in M ε , λ , μ for J ε , λ , μ . Since 0< θ ε , λ , μ p 2 2 p ( S α , β ) p / ( p 2 ) < p 2 2 p ( S α , β ) p / ( p 2 ) ( f ) 2 / ( p 2 ) for λ>0 and μ>0, by Lemma 3.3, there exist a subsequence {( u n , v n )} and ( u 0 , v 0 )H such that ( u n , v n )( u 0 , v 0 ) strongly in H. It is easy to check that ( u 0 , v 0 ) is a nontrivial solution of ( E ε , λ , μ ) and J ε , λ , μ ( u 0 , v 0 )= θ ε , λ , μ . Since J ε , λ , μ ( u 0 , v 0 )= J λ , μ (| u 0 |,| v 0 |) and (| u 0 |,| v 0 |) M ε , λ , μ , by Lemma 2.6, we may assume that u 0 0, v 0 0. Applying the maximum principle, u 0 >0 and v 0 >0 in Ω. □

Choosing 0< ρ 0 <1 such that

B ρ 0 N ( a i ) ¯ B ρ 0 N ( a j ) ¯ =for ij and 1i,jk,

where B ρ 0 N ( a i ) ¯ ={z R N ||z a i | ρ 0 } and f( a i )= max z R N f(z)=1, define K = { a i |1ik} and K ρ 0 / 2 = i = 1 k B ρ 0 / 2 N ( a i ) ¯ . Suppose i = 1 k B ρ 0 N ( a i ) ¯ B r 0 N (0) for some r 0 >0. Let Q ε be given by

Q ε (u,v)= R N χ ( ε z ) | u | α | v | β d z R N | u | α | v | β d z ,

where χ: R N R N , χ(z)=z for |z| r 0 and χ(z)= r 0 z/|z| for |z|> r 0 .

For each 1ik, we define

By Lemma 2.4, there exists t ε i >0 such that ( t ε i α w ε i , t ε i β w ε i ) M ε , λ , μ for each 1ik. Then we have the following result.

Lemma 4.2 There exists ε 1 >0 such that if ε(0, ε 1 ), then Q ε ( t ε i α w ε i , t ε i β w ε i ) K ρ 0 / 2 for each 1ik.

Proof Since

Q ε ( t ε i α w ε i , t ε i β w ε i ) = R N χ ( ε z ) | w ( z a i ε ) | p d z R N | w ( z a i ε ) | p d z = R N χ ( ε z + a i ) | w ( z ) | p d z R N | w ( z ) | p d z a i as  ε 0 + ,

there exists ε 1 >0 such that

Q ε ( t ε i α w ε i , t ε i β w ε i ) K ρ 0 / 2 for any ε(0, ε 1 ) and each 1ik.

 □

We need the following lemmas to prove that β λ , μ i < β ˜ λ , μ i for sufficiently small ε, λ, μ.

Lemma 4.3 θ max = p 2 2 p ( S α , β ) p / ( p 2 ) .

Proof From Part I of Lemma 4.1, we obtain sup t 0 I max (t α w ε i ,t β w ε i )= p 2 2 p ( S α , β ) p / ( p 2 ) uniformly in i. Similarly to Lemma 2.4, there is a sequence { s max i } R + such that ( s max i α w ε i , s max i β w ε i ) N max and

θ max I max ( s max i α u ε i , s max i β u ε i ) = sup t 0 J max ( t α u ε i , t β u ε i ) = p 2 2 p ( S α , β ) p / ( p 2 ) .

Let {( u n , v n )} N max be a minimizing sequence of θ max for I max . It follows that ( u n , v n ) H 2 = R N | u n | α | v n | β dz and

θ max = 1 2 ( u n , v n ) H 2 1 p R N | u n | α | v n | β d z + o n ( 1 ) = p 2 2 p ( u n , v n ) H 2 + o n ( 1 ) .

We may assume that ( u n , v n ) H 2 l and R N | u n | α | v n | β dzl as n, where l= 2 p p 2 θ max >0. By the definition of S α , β , then S α , β l 2 p l. We can deduce that S α , β l p 2 p = ( 2 p p 2 θ max ) p 2 p , that is, p 2 2 p ( S α , β ) p / ( p 2 ) θ max . □

Lemma 4.4 There exists a number δ 0 >0 such that if (u,v) N ε and I ε (u,v) θ max + δ 0 , then Q ε (u,v) K ρ 0 / 2 for any 0<ε< ε 1 .

Proof On the contrary, there exist the sequences { ε n } R + and {( u n , v n )} N ε n such that ε n 0, I ε n ( u n , v n )= θ max (>0)+ o n (1) as n and Q ε n ( u n , v n ) K ρ 0 / 2 for all nN. It is easy to check that {( u n , v n )} is bounded in H. Suppose that R N | u n | α | v n | β dz0 as n. Since

( u n , v n ) H 2 = R N f( ε n z)| u n | α | v n | β dzfor each nN,

then

θ max + o n (1)= I ε n ( u n , v n )= ( 1 2 1 p ) R N f( ε n z)| u n | α | v n | β dz o n (1),

which is a contradiction. Thus, R N | u n | α | v n | β dz0 as n. Similarly to the concentration-compactness principle (see Lions [15, 16] or Wang [[6], Lemma 2.16]), then there exist a constant c 0 >0 and a sequence { z n ˜ } R N such that

B N ( z n ˜ ; 1 ) | u n | α l p | v n | β l p dz c 0 >0,
(4.3)

where 2<l<p=α+β< 2 and p=l(1t)+ 2 t for some t((N2)/N,1). Let ( u n ˜ (z), v n ˜ (z))=( u n (z+ z n ˜ ), v n (z+ z n ˜ )). Then there are a subsequence {( u n ˜ , v n ˜ )} and ( u ˜ , v ˜ )H such that u n ˜ u ˜ and v n ˜ v ˜ weakly in H 1 ( R N ). Using the similar computation of Lemma 2.4, there is a sequence { s max n } R + such that ( s max n u n ˜ , s max n v n ˜ ) N max and

0 < θ max I max ( s max n u n ˜ , s max n v n ˜ ) = I max ( s max n u n , s max n v n ) I ε n ( s max n u n , s max n v n ) I ε n ( u n , v n ) = θ max + o n ( 1 ) as  n .

We deduce that a subsequence { s max n } satisfies s max n s 0 >0. Then there are a subsequence {( s max n u n ˜ , s max n v n ˜ )} and ( s 0 u ˜ , s 0 v ˜ )H such that s max n u n ˜ s 0 u ˜ and s max n v n ˜ s 0 v ˜ weakly in H 1 ( R N ). By (4.3), then u ˜ 0 and v ˜ 0. Applying Ekeland’s variational principle, there exists a (PS)-sequence {( U n , V n )} for I max and ( U n s max n u n ˜ , V n s max n v n ˜ ) H = o n (1). Similarly to the proof of Lemma 3.3, there exist a subsequence {( U n , V n )} and ( U 0 , V 0 )H such that U n U 0 , V n V 0 strongly in H 1 ( R N ) and I max ( U 0 , V 0 )= θ max . Now, we want to show that there exists a subsequence { z n }={ ε n z n ˜ } such that z n z 0 K.

  1. (i)

    Claim that the sequence { z n } is bounded in R N . On the contrary, assume that | z n |, then

    θ max = I max ( U 0 , V 0 ) < 1 2 ( U 0 , V 0 ) H 2 1 p R N f | U 0 | α | V 0 | β d z lim inf n [ ( s max n ) 2 2 ( u n ˜ , v n ˜ ) H 2 ( s max n ) p p R N f ( ε n z + z n ) | u n ˜ | α | v n ˜ | β d z ] = lim inf n [ ( s max n ) 2 2 ( u n , v n ) H 2 ( s max n ) p p R N f ( ε n z ) | u n | α | v n | β d z ] = lim inf n I ε n ( s max n u n , s max n v n ) lim inf n I ε n ( u n , v n ) = θ max ,

which is a contradiction.

  1. (ii)

    Claim that z 0 K . On the contrary, assume that z 0 K, that is, f( z 0 )<1= max z R N f(z). Then use the argument of (i) to obtain that

    θ max = I max ( U 0 , V 0 ) I max ( s 0 U 0 , s 0 V 0 ) < ( s 0 ) 2 2 ( U 0 , V 0 ) H 2 ( s 0 ) p p R N f ( z 0 ) | U 0 | α | V 0 | β d z lim inf n [ ( s max n ) 2 2 ( u n ˜ , v n ˜ ) H 2 ( s max n ) p p R N f ( ε n z + z n ) | u n ˜ | α | v n ˜ | β d z ] θ max ,

which is a contradiction.

Since ( U n s max n u n ˜ , V n s max n v n ˜ ) H = o n (1) and U n U 0 , V n V 0 strongly in H 1 ( R N ), we have that

Q ε n ( u n , v n ) = R N χ ( ε n z ) | u n ˜ ( z z n ˜ ) | α | v n ˜ ( z z n ˜ ) | β d z R N | u n ˜ ( z z n ˜ ) | α | v n ˜ ( z z n ˜ ) | β d z = R N χ ( ε n z + ε n z n ˜ ) | U 0 | α | V 0 | β d z R N | U 0 | α | V 0 | β d z z 0 K ρ 0 / 2 as  n ,

which is a contradiction.

Hence, there exists δ 0 >0 such that if (u,v) N ε and I ε (u,v) θ max + δ 0 , then Q ε (u,v) K ρ 0 / 2 for any 0<ε< ε 1 . □

Lemma 4.5 If (u,v) M ε , λ , μ and J ε , λ , μ (u,v) θ max + δ 0 /2, then there exists a number Λ >0 such that Q ε (u,v) K ρ 0 / 2 for any 0<ε< ε 1 and 0<λ+μ< Λ .

Proof Using the similar computation in Lemma 2.4, we obtain that there is the unique positive number

s ε = ( ( u , v ) H 2 R N f ( ε z ) | u | α | v | β d z ) 1 / ( p 2 )

such that ( s ε u, s ε v) N ε . We want to show that there exists Λ 0 >0 such that if 0<λ+μ< Λ 0 , then s ε <c for some constant c>0 (independent of u and v). First, for (u,v) M ε , λ , μ ,

0< d 0 θ ε , λ , μ J ε , λ , μ (u,v) θ max + δ 0 /2.

Since J ε , λ , μ (u,v),(u,v)=0, then

θ max + δ 0 / 2 J ε , λ , μ ( u , v ) = ( 1 2 1 q ) ( u , v ) H 2 + ( 1 q 1 p ) R N f ( ε z ) | u | α | v | β d z q 2 2 q ( u , v ) H 2 , that is, ( u , v ) H 2 c 1 = 2 q q 2 ( θ max + δ 0 / 2 ) ,
(4.4)

and

d 0 J ε , λ , μ ( u , v ) = ( 1 2 1 p ) ( u , v ) H 2 ( 1 q 1 p ) Ω ( λ g ( ε z ) | u | q + μ h ( ε z ) | v | q ) d z p 2 2 p ( u , v ) H 2 , that is, ( u , v ) H 2 c 2 = 2 p p 2 d 0 .
(4.5)

Moreover, we have that

Ω f ( ε z ) | u | α | v | β d z = ( u , v ) H 2 R N ( λ g ( ε z ) | u | q + μ h ( ε z ) | v | q ) d z c 2 Max S p q 2 ( λ + μ ) c 1 q / 2 ,

where Max=max{ g m , h m }. It follows that there exists Λ 0 >0 such that for 0<λ+μ< Λ 0

R N f(εz)|u | α |v | β dz c 2 Max S p q 2 (λ+μ) ( c 1 ) q / 2 >0.
(4.6)

Hence, by (4.4), (4.5) and (4.6), s ε <c for some constant c>0 (independent of u and v) for 0<λ+μ< Λ 0 . Now, we obtain that

θ max + δ 0 / 2 J ε , λ , μ ( u , v ) = sup t 0 J ε , λ , μ ( t u , t v ) J ε , λ , μ ( s ε u , s ε v ) = 1 2 ( s ε u , s ε v ) H 2 1 p R N f ( ε z ) | s ε u | α | s ε v | β d z 1 q R N ( λ g ( ε z ) | s ε u | q + μ h ( ε z ) | s ε v | q ) d z I ε ( s ε u , s ε v ) 1 q R N ( λ g ( ε z ) | s ε u | q + μ h ( ε z ) | s ε v | q ) d z .

From the above inequality, we deduce that for any 0<ε< ε 1 and 0<λ+μ< Λ 0 ,

I ε ( s ε u , s ε v ) θ max + δ 0 / 2 + 1 q R N ( λ g ( ε z ) | s ε u | q + μ h ( ε z ) | s ε v | q ) d z θ max + δ 0 / 2 + Max ( λ + μ ) S p q 2 ( s ε u , s ε v ) H q < θ max + δ 0 / 2 + Max S p q 2 ( λ + μ ) c q ( c 1 ) q / 2 .

Hence, there exists Λ (0, Λ 0 ) such that for 0<λ+μ< Λ ,

I ε ( s ε u, s ε v) θ max + δ 0 ,where ( s ε u, s ε v) N ε .

By Lemma 4.4, we obtain

Q ε ( s ε u, s ε v)= R N χ ( ε z ) | s ε u | α | s ε v | β d z R N | s ε u | α | s ε v | β d z K ρ 0 / 2 ,

or Q ε (u,v) K ρ 0 / 2 for any 0<ε< ε 0 and 0<λ+μ< Λ . □

Since f <1, then by Lemma 4.3,

θ max = p 2 2 p ( S α , β ) p / ( p 2 ) < p 2 2 p ( S α , β ) p / ( p 2 ) ( f ) 2 / ( p 2 ) .
(4.7)

By Lemmas 4.1, 4.2 and (4.7), for any 0<ε< ε 0 (< ε 1 ) and 0<λ+μ< Λ ,

β ε , λ , μ i J ε , λ , μ ( t ε i α w ε i , t ε i β w ε i ) < p 2 2 p ( S α , β ) p / ( p 2 ) ( f ) 2 / ( p 2 ) .
(4.8)

Applying above Lemma 4.5, we get that

β ˜ ε , λ , μ i θ max + δ 0 /2for any 0<ε< ε 0  and 0<λ+μ< Λ .
(4.9)

For each 1ik, by (4.8) and (4.9), we obtain that

β ε , λ , μ i < β ˜ ε , λ , μ i for any 0<ε< ε 0  and 0<λ+μ< Λ .

It follows that

β ε , λ , μ i = inf ( u , v ) O ε , λ , μ i O ε , λ , μ i J ε , λ , μ (u,v)for any 0<ε< ε 0  and 0<λ+μ< Λ .

Then applying Ekeland’s variational principle and using the standard computation, we have the following lemma.

Lemma 4.6 For each 1ik, there is a ( PS ) β ε , λ , μ i -sequence {( u n , v n )} O ε , λ , μ i in H for J ε , λ , μ .

Proof See Cao-Zhou [8]. □

Proof of Theorem 1.2 For any 0<ε< ε 0 and 0<λ+μ< Λ , by Lemma 4.6, there is a ( PS ) β ε , λ , μ i -sequence {( u n , v n )} O ε , λ , μ i for J ε , λ , μ where 1ik. By (4.8), we obtain that

β ε , λ , μ i < p 2 2 p ( S α , β ) p / ( p 2 ) ( f ) 2 / ( p 2 ) .

Since J ε , λ , μ satisfies the (PS) γ -condition for γ(, p 2 2 p ( S α , β ) p / ( p 2 ) ( f ) 2 / ( p 2 ) ), then J ε , λ , μ has at least k critical points in M ε , λ , μ for any 0<ε< ε 0 and 0<λ+μ< Λ . Set u + =max{u,0} and v + =max{v,0}. Replace the terms R N f(εz)|u | α |v | β dz and R N (λg(εz)|u | q +μh(εz)|v | q )dz of the functional J ε , λ , μ by R N f(εz) u + α v + β dz and R N (λg(εz) u + q +μh(εz) v + q )dz, respectively. It follows that ( E ε , λ , μ ) has k nonnegative solutions. Applying the maximum principle, ( E ε , λ , μ ) admits at least k positive solutions. □

References

  1. Lin TC, Wei J: Spikes in two coupled nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 2005, 22: 403-439. 10.1016/j.anihpc.2004.03.004

    Article  MathSciNet  Google Scholar 

  2. Alves CO, de Morais Filho DC, Souto MAS: On systems of elliptic equations involving subcritical or critical Sobolev exponents. Nonlinear Anal. 2000, 42: 771-787. 10.1016/S0362-546X(99)00121-2

    Article  MathSciNet  Google Scholar 

  3. Han P: Multiple positive solutions of nonhomogeneous elliptic system involving critical Sobolev exponents. Nonlinear Anal. 2006, 64: 869-886. 10.1016/j.na.2005.04.053

    Article  MathSciNet  Google Scholar 

  4. Hsu TS: Multiple positive solutions for a critical quasilinear elliptic system with concave-convex nonlinearities. Nonlinear Anal. 2009, 71: 2688-2698. 10.1016/j.na.2009.01.110

    Article  MathSciNet  Google Scholar 

  5. Wu TF: The Nehari manifold for a semilinear elliptic system involving sign-changing weight function. Nonlinear Anal. 2008, 68: 1733-1745. 10.1016/j.na.2007.01.004

    Article  MathSciNet  Google Scholar 

  6. Wang, HC: Palais-Smale approaches to semilinear elliptic equations in unbounded domains. Electron. J. Differ. Equ. Monograph 06 (2004)

  7. Han P: The effect of the domain topology on the number of positive solutions of elliptic systems involving critical Sobolev exponents. Houst. J. Math. 2006, 32: 1241-1257.

    Google Scholar 

  8. Cao DM, Zhou HS:Multiple positive solutions of nonhomogeneous semilinear elliptic equations in R N . Proc. R. Soc. Edinb., Sect. A, Math. 1996, 126: 443-463. 10.1017/S0308210500022836

    Article  MathSciNet  Google Scholar 

  9. Tarantello G: On nonhomogeneous elliptic involving critical Sobolev exponent. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1992, 9: 281-304.

    MathSciNet  Google Scholar 

  10. Bahri A, Li YY:On a min-max procedure for the existence of a positive solution for certain scalar field equations in R N . Rev. Mat. Iberoam. 1990, 6: 1-15.

    Article  MathSciNet  Google Scholar 

  11. Bahri A, Lions PL: On the existence of a positive solution of semilinear elliptic equations in unbounded domains. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1997, 14: 365-413. 10.1016/S0294-1449(97)80142-4

    Article  MathSciNet  Google Scholar 

  12. Gidas B, Ni WM, Nirenberg L: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 1979, 68: 209-243. 10.1007/BF01221125

    Article  MathSciNet  Google Scholar 

  13. Kwong MK:Uniqueness of positive solutions of uu+ u p =0 in R N . Arch. Ration. Mech. Anal. 1989, 105: 234-266.

    Article  MathSciNet  Google Scholar 

  14. Lien WC, Tzeng SY, Wang HC: Existence of solutions of semilinear elliptic problems on unbounded domains. Differ. Integral Equ. 1993, 6: 1281-1298.

    MathSciNet  Google Scholar 

  15. Lions PL: The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1984, 1: 109-145.

    Google Scholar 

  16. Lions PL: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1984, 1: 223-283.

    Google Scholar 

Download references

Acknowledgements

The author was grateful for the referee’s helpful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huei-li Lin.

Additional information

Competing interests

The author declares that he has no competing interests.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Lin, Hl. Multiple positive solutions for semilinear elliptic systems involving subcritical nonlinearities in R N . Bound Value Probl 2012, 118 (2012). https://doi.org/10.1186/1687-2770-2012-118

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-2770-2012-118

Keywords