Abstract
In this paper we deal with the existence of a positive solution for a class of semilinear systems of multisingular elliptic equations which involve Sobolev critical exponents. In fact, by the analytic techniques and variational methods, we prove that there exists at least one positive solution for the system.
MSC: 35J60, 35B33.
Keywords:
semilinear elliptic system; nontrivial solution; critical exponent; variational method1 Introduction
We consider the following elliptic system:
where () is a smooth bounded domain such that , , , are different points, , , , , , , .
We work in the product space , where the space is the completion of with respect to the norm .
In resent years many publications [13] concerning semilinear elliptic equations involving singular points and the critical Sobolev exponent have appeared. Particularly in the last decade or so, many authors used the variational method and analytic techniques to study the existence of positive solutions of systems of the form of (1.1) or its variations; see, for example, [48].
Before stating the main result, we clarify some terminology. Since our method is variational in nature, we need to define the energy functional of (1.1) on
Then belongs to . A pair of functions is said to be a solution of (1.1) if , and for all , we have
Standard elliptic arguments show that
The following assumptions are needed:
() , where is the first eigenvalue of L, , are the eigenvalues of the matrix .
The quadratic from is positively defined and satisfies
Our main results are as follows.
Theorem 1.1Suppose () holds. Then for any solutionof problem (1.1), there exists a positive constantsuch that
Theorem 1.2Suppose () holds. Then for any positive solutionof problem (1.1), there exists a positive constantsuch thatand
Theorem 1.3Suppose (), () hold. Then the problem (1.1) has a positive solution.
2 Preliminaries
Using the Young inequality, the following best constant is well defined:
where is the completion of with respect to the norm .
We infer that is attained in by the functions
where
For all , , , , by the Young and HardySobolev inequalities, the following constant is well defined on :
Set
where , , satisfies and , , for all small. Then for any , by [9] we have the following estimates:
3 Asymptotic behavior of solutions
Proof of Theorem 1.1 Suppose is a nontrivial solution to problem (1.1). For all define
It is not difficult to verify that and satisfy
Let small enough such that and for . Also, let be a cutoff function. Set
where . Multiplying the first equation of (3.1) by and the second one by respectively and integrating, we have
Then
By the Cauchy inequality and the Young inequality, we get
Using CaffarelliKohnNirenberg inequality [10], we infer that
Define
Then . Now, from the Hölder inequality, we deduce that
In the sequel, we have
So, from (3.4) to (3.8) it follows that
Take and to be a constant near the zero. Letting , we infer that and so
Suppose is sufficiently small such that and is a cutoff function with the properties and in .
Then we have the following results:
where we used the Hölder inequality. From (3.9) in combination with (3.11), it follows that
Denote , and , , where , and . Using (3.12) recursively, we get
we have as . Note that the infinite sums on the righthand side converge, then we obtain that , particularly, we have . Thus,
where . The proof is complete. □
Proof of Theorem 1.2 Suppose is a positive solution to problem (1.1). For all , set
Then
It is easy to verify that
Combining (3.13) with (3.14), we get
Therefore, by the maximum principle in , we obtain
Taking , we conclude for all .
Similar result also holds for . Therefore, we have
4 Local condition and the existence of positive solutions
We first establish a compactness result.
Lemma 4.1Suppose that () holds. ThenJsatisfies thecondition for all
Proof Suppose that satisfies and . The standard argument shows that is bounded in .
Therefore, is a solution to (1.1). Then by the concentrationcompactness principle [1113] and up to a subsequence, there exist an at most countable set , a set of different points , nonnegative real numbers , , , and , , () such that the following convergence holds in the sense of measures:
By the Sobolev inequalities [10], we have
We claim that is finite, and for any , or .
In fact, let be small enough for any , and for , . Let be a smooth cutoff function centered at such that , for , for and . Then
Then we have
By the Sobolev inequality, ; and then we deduce that or , which implies that is finite.
Now, we consider the possibility of concentration at points (), for small enough that for all and for and , . Let be a smooth cutoff function centered at such that , for and . Then
Thus, we have
From (4.1) and (4.2) we derive that , , and then either or . On the other hand, from the above arguments, we conclude that
If for all and , then , which contradicts the assumption that . On the other hand, if there exists an such that or there exists a with , then we infer that
which contradicts our assumptions. Hence, , as in . □
First, under the assumptions (), (), we have the following notations:
where is a minimal point of , and therefore a root of the equation
Lemma 4.2Suppose that () holds. Then we have
(ii) has the minimizers, , whereare the extremal functions ofdefined as in (2.2).
Proof The argument is similar to that of [6]. □
Lemma 4.3Under the assumptions of (), we have
Proof Suppose () holds. Define the function
Note that and as t is close to 0. Thus, is attained at some finite with . Furthermore, , where and are the positive constants independent of ε. By using (1.2), we have
Note that
From (4.3), Lemma 4.2 and Lemma 4.3, it follows that
□
Proof of Theorem 1.3 Set , where
Suppose that () holds. For all , from the Young and HardySobolev inequalities, it follows that
and there exists a constant small such that
Since as , there exists such that and . By the mountainpass theorem [14], there exists a sequence such that and , as .
From Lemma 4.2 it follows that
By Lemma 4.1 there exists a subsequence of , still denoted by , such that strongly in . Thus, we get a critical point of J satisfying (1.1), and c is a critical value. Set .
Replacing respectively u, ν with and in terms of the righthand side of (1.1) and repeating the above process, we can get a nonnegative nontrivial solution of (1.1). If , we get by (1.1) and the assumption . Similarly, if , we also have . There, . From the maximum principle, it follows that in Ω. □
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
Each of the authors, SK, MF and OKK contributed to each part of this work equally and read and approved the final version of the manuscript.
References

Cao, D, Han, P: Solutions to critical elliptic equations with multisingular inverse square potentials. J. Differ. Equ.. 224, 332–372 (2006). Publisher Full Text

Hsu, TS: Multiple positive solutions for semilinear elliptic equations involving multisingular inverse square potentials and concaveconvex nonlinearities. Nonlinear Anal.. 74, 3703–3715 (2011). Publisher Full Text

Kang, D: On the weighted elliptic problems involving multisingular potentials and multicritical exponents. Acta Math. Sin. Engl. Ser.. 25, 435–444 (2009). Publisher Full Text

Abdellaoui, B, Felli, V, Peral, I: Some remarks on systems of elliptic equations doubly critical in the whole . Calc. Var. Partial Differ. Equ.. 34, 97–137 (2009). Publisher Full Text

Bouchekif, M, Nasri, Y: On a singular elliptic system at resonance. Ann. Mat. Pura Appl.. 189, 227–240 (2010). Publisher Full Text

Huang, Y, Kang, D: On the singular elliptic systems involving multiple critical Sobolev exponents. Nonlinear Anal.. 74, 400–412 (2011). Publisher Full Text

Kang, D: Semilinear systems involving multiple critical HardySobolev exponents and three singular points. Appl. Math.. 218, 4514–4522 (2011)

Kang, D, Peng, S: Existence and asymptotic properties of solutions to elliptic systems involving multiple critical exponents. Sci. China Math.. 54(2), 243–256 (2011). Publisher Full Text

Kang, D, Huang, Y, Liu, S: Asymptotic estimates on the extremal functions of a quasilinear elliptic problem. J. SouthCentral Univ. Natl. Nat. Sci. Ed.. 27(3), 91–95 (2008). PubMed Abstract  Publisher Full Text

Caffarelli, L, Kohn, R, Nirenberg, L: First order interpolation inequality with weights. Compos. Math.. 53, 259–275 (1984)

Cai, M, Kang, D: Concentrationcompactness principles for the systems of critical elliptic equations. Acta Math. Sci. Ser. B Engl. Ed. (to appear)

Lions, PL: The concentrationcompactness principle in the calculus of variations: the limit case I. Rev. Mat. Iberoam.. 1, 45–121 (1985)

Lions, PL: The concentrationcompactness principle in the calculus of variations: the limit case II. Rev. Mat. Iberoam.. 1, 145–201 (1985)

Ambrosetti, A, Rabinowitz, PH: Dual variational methods in critical point theory and applications. J. Funct. Anal.. 14, 349–381 (1973). Publisher Full Text