Abstract
This paper is concerned with the invasion traveling wave solutions of a LotkaVolterra type competition system with nonlocal dispersal, the purpose of which is to formulate the dynamics between the resident and the invader. By constructing upper and lower solutions and passing to a limit function, the existence of traveling wave solutions is obtained if the wave speed is not less than a threshold. When the wave speed is smaller than the threshold, the nonexistence of invasion traveling wave solutions is proved by the theory of asymptotic spreading.
MSC: 35C07, 35K57, 37C65.
Keywords:
comparison principle; asymptotic spreading; upper and lower solutions; invasion waves1 Introduction
In the past decades, much attention has been paid to the spatial propagation modes of the following LotkaVolterra type diffusion system:
in which all the parameters are positive and , , , are two competitors. Many investigators considered its traveling wave solutions connecting different spatial homogeneous steady states such as the existence, monotonicity, minimal wave speed and stability; see [116].
In particular, if holds in (1.1), then the corresponding reaction system has a stable equilibrium and an unstable one . With the condition , many papers including [2,3,5,6,8,16] studied the traveling wave solutions connecting with . These traveling wave solutions can formulate the spatial exclusive process between the resident and the invader so that the minimal wave speed reflecting the invasion speed of the invader becomes a hot topic in these works; we refer to Shigesada and Kawasaki [17] for some examples of the corresponding biological records and the literature importance of invasion speed. Moreover, the similar problem was also discussed in different spatial media such as the lattice differential systems in Guo and Liang [4], Guo and Wu [18].
In this paper, we consider the minimal wave speed of traveling wave solutions in the following nonlocal dispersal system (see Yu and Yuan [19]):
in which , , and denote the densities of two competitors at time t and location , all the parameters are positive and
, , are probability functions formulating the random dispersal of individuals and satisfy the following assumptions:
(J1) is nonnegative and Lebesgue measurable for each ;
In (1.2), the spatial migration of individuals is formulated by the socalled dispersal operator, which has significant sense in population dynamics. For example, in the patch models of population dynamics [20], the rate of immigration into a patch from a particular other patch is usually taken as proportional to the local population, and the dispersal can be regarded as the extension of these ideas to a continuous media model. Such a diffusion mechanism also arises from physics processes with long range effect and other disciplines [13], and the dynamics of evolutionary systems with dispersal effect has been widely studied in recent years; we refer to [13,2132] and the references cited therein.
Hereafter, a traveling wave solution of (1.2) is a special solution of the form
where is the wave speed at which the wave profile propagates in spatial media ℝ. Thus, with must satisfy
Moreover, we also require the following asymptotic boundary conditions:
From the viewpoint of ecology, a traveling wave solution satisfying (1.4)(1.5) can model the population invasion process: at any fixed , only (the resident) can be found long time ago ( such that ), but after a long time ( such that ), only (the invader) can be seen. Therefore, we call a traveling wave solution satisfying (1.4)(1.5) an invasion traveling wave solution.
To obtain the existence of (1.4)(1.5) if the wave speed is larger than a threshold depending on , , and , we construct proper upper and lower solutions and use the results in Pan et al.[33]. If the wave speed is the threshold, the existence of traveling wave solutions is proved by passing to a limit function. Finally, when the wave speed is smaller than the threshold, the nonexistence of traveling wave solutions is established by the theory of asymptotic spreading developed by Jin and Zhao [34]. For more results on the traveling wave solutions of evolutionary systems with nonlocal dispersal, we refer to Bates et al.[22], Coville and Dupaigne [35,36], Li et al.[37], Lv [38], Pan [39], Pan et al.[33,40], Sun et al.[41], Wu and Liu [42], Xu and Weng [43], Zhang et al.[44]. In particular, when hold in (1.2), Yu and Yuan [19] established the existence of traveling wave solutions connecting with
In addition, Li and Lin [45] and Zhang et al.[46] investigated the existence of positive traveling wave solutions of (1.2) for , and , respectively.
The rest of this paper is organized as follows. In Section 2, we give some preliminaries. By constructing upper and lower solutions and using a limit process, the existence of traveling wave solutions is established in Section 3. In the last section, we obtain the nonexistence of traveling wave solutions.
2 Preliminaries
In this paper, we shall use the standard partial order in . Moreover, denote
then X is a Banach space equipped with the standard supremum norm. If with , then
In order to apply the comparison principle, we first make a change of variables to obtain a cooperative system. Let , , and drop the star for the sake of convenience, then (1.4) becomes
At the same time, (1.5) will be
then is monotone in the functional sense if . Applying these notations, we further define an operator as follows:
Clearly, a fixed point of in X satisfies (2.1), and a solution of (2.1) is also a fixed point of F. To continue our discussion, we also introduce the following definition.
Definition 2.1 Assume that . If , are differentiable on , here contains finite points, and the derivatives are essentially bounded so that
for , then it is an upper (a lower) solution of (2.1).
Using Pan et al.[33], Theorem 3.2, we obtain the following conclusion.
Lemma 2.2Assume thatis an upper solution of (2.1), whileis a lower solution of (2.1). Also, suppose that
Then (2.1)(2.2) has a positive monotone solutionsuch that
We now consider the following initial value problem:
where J satisfies (J1) to (J3), and are constants, and the initial value with
In addition, let be a subset of C defined by
In Jin and Zhao [34], the authors investigated the asymptotic spreading of a periodic population model with spatial dispersal. Note that the parameters in (2.4) are positive constants, then [34], Theorem 2.1, implies the following result.
Lemma 2.3Assume that. Then (2.4) has a unique solutionsuch that
In particular, ifwith some, then
Furthermore, we can also apply the results of Jin and Zhao [34], Theorem 3.5, since the assumptions (H1) and (H2) of [34] are clear. Define
Then Jin and Zhao [34], Theorem 3.5, indicates the following conclusion.
Lemma 2.4Assume thatadmits nonempty support. Then
3 Existence of traveling wave solutions
In this section, we shall prove the existence of positive solutions of (2.1)(2.2). Let
Lemma 3.1There exists a constantsuch that the following items hold.
(1) For each, has two positive real roots.
(2) If, then there existssuch thatandfor any.
The above result is clear and we omit the proof here. Using these constants, we can prove the following conclusion.
Theorem 3.2Assume thatand one of the following two items holds.
Then (2.1)(2.2) has a monotone solution.
Proof Define continuous functions as follows:
Claim A: is an upper solution to (2.1).
Moreover, let hold and satisfy
and
Evidently, is a lower solution to (2.1) (for the existence of and , we refer to Pan et al.[33]). By Lemma 2.2, we see that (2.1)(2.2) has a monotone solution . Now, it suffices to prove Claim A.
If or , the result is clear. If , then
such that
which completes the proof on for .
We now consider with . If , then such that
and
Therefore, (3.1) leads to
If , then and (3.2) imply that
Therefore, Claim A is true. The proof is complete. □
Theorem 3.3Assume that one of the following items holds.
Then (2.1)(2.2) has a monotone solution with.
Proof If (3.3) or (3.4) holds, then there exists a decreasing sequence with , such that for each , (2.1)(2.2) has a positive monotone solution . Note that a traveling wave solution is invariant in the sense of phase shift, so we can assume that
for any n. By the AscoliArzela lemma and a standard nested subsequence argument (see, e.g., Thieme and Zhao [47]), there exists a subsequence of , which is still denoted by without confusion, such that converges uniformly on every bounded interval, and hence pointwise on ℝ to a continuous function . Moreover, for each , we have
and the convergence in s is uniform for . Letting and using the dominated convergence theorem in , we know that also satisfies (2.1) with . In addition, the following items are also clear.
(T2) , are nondecreasing in ξ;
The items (T1) to (T3) further indicate that exists for . Denote
From (T1), it is clear that
If , then the dominated convergence theorem in implies that
Using the dominated convergence theorem in for , we get the following possible conclusions:
If (L1) is true, then the dominated theorem in tells us
which implies a contradiction. If (L2) is true, then leads to
which is also a contradiction. What we have done implies that . Using the dominated convergence theorem in again, we see that and .
If , then a discussion similar to that on can be presented and we omit it here. Because , then the dominated convergence in as indicates that or . If is true, then holds and
has a monotone solution, which is impossible. Therefore, holds.
Thus, is a positive monotone solution of (2.1)(2.2) with , the proof is complete. □
4 Nonexistence of traveling wave solutions
In this section, we shall formulate the nonexistence of invasion traveling wave solutions of (1.2) by the theory of asymptotic spreading. Before this, we first present a comparison principle formulated by Jin and Zhao [34], Theorem 2.3.
Lemma 4.1Assume that. If, , is bounded such that
We now give the main result of this section.
Theorem 4.2If, then (2.1)(2.2) has no positive solutions.
Proof Define
If (2.1)(2.2) has a positive solution for some , then
with the following asymptotic boundary condition:
Recalling the definition of traveling wave solutions, we see that also satisfies
and
Using Lemmas 2.4 and 4.1, we see that
However, the boundary condition (4.3) indicates that
and
which implies a contradiction between (4.6) and (4.7). The proof is complete. □
Remark 4.3 Under proper assumptions, we have obtained the threshold of the existence of positive solutions to (2.1)(2.2).
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
The main results in this article were derived by SP and GL. All authors read and approved the final manuscript.
Acknowledgements
The authors express their thanks to the referees for their helpful comments and suggestions on the manuscript. This work was partially supported by the Development Program for Outstanding Young Teachers in Lanzhou University of Technology (1010ZCX019), NSF of China (11101094) and FRFCU (lzujbky2011k27).
References

Ahmad, S, Lazer, AC, Tineo, A: Traveling waves for a system of equations. Nonlinear Anal. TMA. 68, 3909–3912 (2008). Publisher Full Text

Fei, N, Carr, J: Existence of travelling waves with their minimal speed for a diffusing LotkaVolterra system. Nonlinear Anal., Real World Appl.. 4, 503–524 (2003). Publisher Full Text

Gourley, SA, Ruan, S: Convergence and traveling fronts in functional differential equations with nonlocal terms: a competition model. SIAM J. Math. Anal.. 35, 806–822 (2003). Publisher Full Text

Guo, JS, Liang, X: The minimal speed of traveling fronts for the LotkaVolterra competition system. J. Dyn. Differ. Equ.. 23, 353–363 (2011). Publisher Full Text

Hosono, Y: The minimal speed of traveling fronts for a diffusive LotkaVolterra competition model. Bull. Math. Biol.. 60, 435–448 (1998). Publisher Full Text

Huang, W: Problem on minimum wave speed for a LotkaVolterra reactiondiffusion competition model. J. Dyn. Differ. Equ.. 22, 285–297 (2010). Publisher Full Text

Kanon, Y, Fang, Q: Stability of monotone travelling waves for competitiondiffusion equations. Jpn. J. Ind. Appl. Math.. 13, 343–349 (1996). Publisher Full Text

Lewis, MA, Li, B, Weinberger, HF: Spreading speed and linear determinacy for twospecies competition models. J. Math. Biol.. 45, 219–233 (2002). PubMed Abstract  Publisher Full Text

Li, WT, Lin, G, Ruan, S: Existence of traveling wave solutions in delayed reactiondiffusion systems with applications to diffusioncompetition systems. Nonlinearity. 19, 1253–1273 (2006). Publisher Full Text

Lin, G, Li, WT: Bistable wavefronts in a diffusive and competitive LotkaVolterra type system with nonlocal delays. J. Differ. Equ.. 244, 487–513 (2008). PubMed Abstract  Publisher Full Text

Lin, G, Li, WT, Ma, M: Travelling wave solutions in delayed reaction diffusion systems with applications to multispecies models. Discrete Contin. Dyn. Syst., Ser. B. 19, 393–414 (2010)

Lv, G, Wang, M: Traveling wave front in diffusive and competitive LotkaVolterra system with delays. Nonlinear Anal., Real World Appl.. 11, 1323–1329 (2010). Publisher Full Text

Murray, LD: Mathematical Biology, Heidelberg, Springer (1989)

Tang, MM, Fife, P: Propagating fronts for competing species equations with diffusion. Arch. Ration. Mech. Anal.. 73, 69–77 (1980). Publisher Full Text

Wang, M, Lv, G: Entire solutions of a diffusive and competitive LotkaVolterra type system with nonlocal delays. Nonlinearity. 23, 1609–1630 (2010). Publisher Full Text

Yuan, Z, Zou, X: Coinvasion waves in a reaction diffusion model for competing pioneer and climax species. Nonlinear Anal., Real World Appl.. 11, 232–245 (2010). Publisher Full Text

Shigesada, N, Kawasaki, K: Biological Invasions: Theory and Practice, Oxford University Press, Oxford (1997)

Guo, JS, Wu, CH: Traveling wave front for a twocomponent lattice dynamical system arising in competition models. J. Differ. Equ.. 252, 4367–4391 (2012)

Yu, Z, Yuan, R: Travelling wave solutions in nonlocal reactiondiffusion systems with delays and applications. ANZIAM J.. 51, 49–66 (2009). Publisher Full Text

van den Driessche, P: Spatial structure: patch models. In: Brauer F, Driessche P, Wu J (eds.) Mathematical Epidemiology, pp. 179–189. Springer, Berlin (2008)

Bates, PW: On some nonlocal evolution equations arising in materials science. In: Brunner H, Zhao X, Zou X (eds.) Nonlinear Dynamics and Evolution Equations, pp. 13–52. Amer. Math. Soc., Providence (2006)

Bates, PW, Fife, PC, Ren, X, Wang, X: Traveling waves in a convolution model for phase transition. Arch. Ration. Mech. Anal.. 138, 105–136 (1997). Publisher Full Text

Bates, PW, Han, J: The Neumann boundary problem for a nonlocal CahnHilliard equation. J. Differ. Equ.. 212, 235–277 (2005). Publisher Full Text

Bates, PW, Zhao, G: Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal. J. Math. Anal. Appl.. 332, 428–440 (2007). Publisher Full Text

Carr, J, Chmaj, A: Uniqueness of travelling waves for nonlocal monostable equations. Proc. Am. Math. Soc.. 132, 2433–2439 (2004). Publisher Full Text

Cortázar, C, Coville, J, Elgueta, M, Martínez, S: A nonlocal inhomogeneous dispersal process. J. Differ. Equ.. 241, 332–358 (2007). Publisher Full Text

Ermentrout, B, Mcleod, J: Existence and uniqueness of travelling waves for a neural network. Proc. R. Soc. Edinb. A. 123, 461–478 (1994)

Fife, PC: Some nonclassical trends in parabolic and paraboliclike evolutions. In: Kirkilionis M, Krömker S, Rannacher R, Tomi F (eds.) Trends in Nonlinear Analysis, pp. 153–191. Springer, Berlin (2003)

Kao, CY, Lou, Y, Shen, W: Random dispersal vs. nonlocal dispersal. Discrete Contin. Dyn. Syst.. 26, 551–596 (2010)

Shen, W, Zhang, A: Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats. J. Differ. Equ.. 249, 747–795 (2010). PubMed Abstract  Publisher Full Text

Yanagida, E, Zhang, L: Speeds of traveling waves in some integrodifferential equations arising from neuronal networks. Jpn. J. Ind. Appl. Math.. 27, 347–373 (2010). Publisher Full Text

Zhang, G: Global stability of wavefronts with minimal speeds for nonlocal dispersal equations with degenerate nonlinearity. Nonlinear Anal.. 74, 6518–6529 (2011). Publisher Full Text

Pan, S, Li, WT, Lin, G: Travelling wave fronts in nonlocal delayed reactiondiffusion systems and applications. Z. Angew. Math. Phys.. 60, 377–392 (2009). PubMed Abstract  Publisher Full Text

Jin, Y, Zhao, XQ: Spatial dynamics of a periodic population model with dispersal. Nonlinearity. 22, 1167–1189 (2009). Publisher Full Text

Coville, J, Dupaigne, L: Propagation speed of travelling fronts in nonlocal reactiondiffusion equation. Nonlinear Anal. TMA. 60, 797–819 (2005). Publisher Full Text

Coville, J, Dupaigne, L: On a nonlocal equation arising in population dynamics. Proc. R. Soc. Edinb. A. 137, 725–755 (2007)

Li, WT, Sun, Y, Wang, ZC: Entire solutions in the FisherKPP equation with nonlocal dispersal. Nonlinear Anal., Real World Appl.. 11, 2302–2313 (2010). Publisher Full Text

Lv, G: Asymptotic behavior of traveling fronts and entire solutions for a nonlocal monostable equation. Nonlinear Anal. TMA. 72, 3659–3668 (2010). Publisher Full Text

Pan, S: Traveling wave fronts of delayed nonlocal diffusion systems without quasimonotonicity. J. Math. Anal. Appl.. 346, 415–424 (2008). Publisher Full Text

Pan, S, Li, WT, Lin, G: Existence and stability of traveling wavefronts in a nonlocal diffusion equation with delay. Nonlinear Anal. TMA. 72, 3150–3158 (2010). Publisher Full Text

Sun, Y, Li, WT, Wang, ZC: Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonlinearity. Nonlinear Anal. TMA. 74, 814–826 (2011). Publisher Full Text

Wu, S, Liu, S: Traveling waves for delayed nonlocal diffusion equations with crossingmonostability. Appl. Math. Comput.. 217, 1435–1444 (2010). Publisher Full Text

Xu, Z, Weng, P: Traveling waves in a convolution model with infinite distributed delay and nonmonotonicity. Nonlinear Anal., Real World Appl.. 12, 633–647 (2011). Publisher Full Text

Zhang, G, Li, WT, Wang, ZC: Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity. J. Differ. Equ.. 252, 5096–5124 (2012). Publisher Full Text

Li, X, Lin, G: Traveling wavefronts in nonlocal dispersal and cooperative LotkaVolterra system with delays. Appl. Math. Comput.. 204, 738–744 (2008). Publisher Full Text

Zhang, G, Li, WT, Lin, G: Traveling waves in delayed predatorprey systems with nonlocal diffusion and stage structure. Math. Comput. Model.. 49, 1021–1029 (2009). Publisher Full Text

Thieme, HR, Zhao, XQ: Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction diffusion models. J. Differ. Equ.. 195, 430–470 (2003). Publisher Full Text