Boundary Value Problems
Open Badges Research

Invasion traveling wave solutions of a competitive system with dispersal

Shuxia Pan1* and Guo Lin2

Author Affiliations

1 Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People’s Republic of China

2 School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China

For all author emails, please log on.

Boundary Value Problems 2012, 2012:120  doi:10.1186/1687-2770-2012-120

The electronic version of this article is the complete one and can be found online at: http://www.boundaryvalueproblems.com/content/2012/1/120

 Received: 31 January 2012 Accepted: 8 October 2012 Published: 24 October 2012

© 2012 Pan and Lin; licensee Springer

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper is concerned with the invasion traveling wave solutions of a Lotka-Volterra type competition system with nonlocal dispersal, the purpose of which is to formulate the dynamics between the resident and the invader. By constructing upper and lower solutions and passing to a limit function, the existence of traveling wave solutions is obtained if the wave speed is not less than a threshold. When the wave speed is smaller than the threshold, the nonexistence of invasion traveling wave solutions is proved by the theory of asymptotic spreading.

MSC: 35C07, 35K57, 37C65.

Keywords:
comparison principle; asymptotic spreading; upper and lower solutions; invasion waves

1 Introduction

In the past decades, much attention has been paid to the spatial propagation modes of the following Lotka-Volterra type diffusion system:

(1.1)

in which all the parameters are positive and , , , are two competitors. Many investigators considered its traveling wave solutions connecting different spatial homogeneous steady states such as the existence, monotonicity, minimal wave speed and stability; see [1-16].

In particular, if holds in (1.1), then the corresponding reaction system has a stable equilibrium and an unstable one . With the condition , many papers including [2,3,5,6,8,16] studied the traveling wave solutions connecting with . These traveling wave solutions can formulate the spatial exclusive process between the resident and the invader so that the minimal wave speed reflecting the invasion speed of the invader becomes a hot topic in these works; we refer to Shigesada and Kawasaki [17] for some examples of the corresponding biological records and the literature importance of invasion speed. Moreover, the similar problem was also discussed in different spatial media such as the lattice differential systems in Guo and Liang [4], Guo and Wu [18].

In this paper, we consider the minimal wave speed of traveling wave solutions in the following nonlocal dispersal system (see Yu and Yuan [19]):

(1.2)

in which , , and denote the densities of two competitors at time t and location , all the parameters are positive and

(1.3)

, , are probability functions formulating the random dispersal of individuals and satisfy the following assumptions:

(J1) is nonnegative and Lebesgue measurable for each ;

(J2) for any , , ;

(J3) , , , .

In (1.2), the spatial migration of individuals is formulated by the so-called dispersal operator, which has significant sense in population dynamics. For example, in the patch models of population dynamics [20], the rate of immigration into a patch from a particular other patch is usually taken as proportional to the local population, and the dispersal can be regarded as the extension of these ideas to a continuous media model. Such a diffusion mechanism also arises from physics processes with long range effect and other disciplines [13], and the dynamics of evolutionary systems with dispersal effect has been widely studied in recent years; we refer to [13,21-32] and the references cited therein.

Hereafter, a traveling wave solution of (1.2) is a special solution of the form

where is the wave speed at which the wave profile propagates in spatial media ℝ. Thus, with must satisfy

(1.4)

Moreover, we also require the following asymptotic boundary conditions:

(1.5)

From the viewpoint of ecology, a traveling wave solution satisfying (1.4)-(1.5) can model the population invasion process: at any fixed , only (the resident) can be found long time ago ( such that ), but after a long time ( such that ), only (the invader) can be seen. Therefore, we call a traveling wave solution satisfying (1.4)-(1.5) an invasion traveling wave solution.

To obtain the existence of (1.4)-(1.5) if the wave speed is larger than a threshold depending on , , and , we construct proper upper and lower solutions and use the results in Pan et al.[33]. If the wave speed is the threshold, the existence of traveling wave solutions is proved by passing to a limit function. Finally, when the wave speed is smaller than the threshold, the nonexistence of traveling wave solutions is established by the theory of asymptotic spreading developed by Jin and Zhao [34]. For more results on the traveling wave solutions of evolutionary systems with nonlocal dispersal, we refer to Bates et al.[22], Coville and Dupaigne [35,36], Li et al.[37], Lv [38], Pan [39], Pan et al.[33,40], Sun et al.[41], Wu and Liu [42], Xu and Weng [43], Zhang et al.[44]. In particular, when hold in (1.2), Yu and Yuan [19] established the existence of traveling wave solutions connecting with

In addition, Li and Lin [45] and Zhang et al.[46] investigated the existence of positive traveling wave solutions of (1.2) for , and , respectively.

The rest of this paper is organized as follows. In Section 2, we give some preliminaries. By constructing upper and lower solutions and using a limit process, the existence of traveling wave solutions is established in Section 3. In the last section, we obtain the nonexistence of traveling wave solutions.

2 Preliminaries

In this paper, we shall use the standard partial order in . Moreover, denote

then X is a Banach space equipped with the standard supremum norm. If with , then

In order to apply the comparison principle, we first make a change of variables to obtain a cooperative system. Let , , and drop the star for the sake of convenience, then (1.4) becomes

(2.1)

At the same time, (1.5) will be

(2.2)

Take and

then is monotone in the functional sense if . Applying these notations, we further define an operator as follows:

Clearly, a fixed point of in X satisfies (2.1), and a solution of (2.1) is also a fixed point of F. To continue our discussion, we also introduce the following definition.

Definition 2.1 Assume that . If , are differentiable on , here contains finite points, and the derivatives are essentially bounded so that

(2.3)

for , then it is an upper (a lower) solution of (2.1).

Using Pan et al.[33], Theorem 3.2, we obtain the following conclusion.

Lemma 2.2Assume thatis an upper solution of (2.1), whileis a lower solution of (2.1). Also, suppose that

(P1) ;

(P2) , ;

(P3) for all, , and.

Then (2.1)-(2.2) has a positive monotone solutionsuch that

We now consider the following initial value problem:

(2.4)

where J satisfies (J1) to (J3), and are constants, and the initial value with

In addition, let be a subset of C defined by

In Jin and Zhao [34], the authors investigated the asymptotic spreading of a periodic population model with spatial dispersal. Note that the parameters in (2.4) are positive constants, then [34], Theorem 2.1, implies the following result.

Lemma 2.3Assume that. Then (2.4) has a unique solutionsuch that

In particular, ifwith some, then

Furthermore, we can also apply the results of Jin and Zhao [34], Theorem 3.5, since the assumptions (H1) and (H2) of [34] are clear. Define

Then Jin and Zhao [34], Theorem 3.5, indicates the following conclusion.

Lemma 2.4Assume thatadmits nonempty support. Then

whereis defined by (2.4).

3 Existence of traveling wave solutions

In this section, we shall prove the existence of positive solutions of (2.1)-(2.2). Let

for any , .

Lemma 3.1There exists a constantsuch that the following items hold.

(1) For each, has two positive real roots.

(2) If, then there existssuch thatandfor any.

(3) If, thenfor any.

The above result is clear and we omit the proof here. Using these constants, we can prove the following conclusion.

Theorem 3.2Assume thatand one of the following two items holds.

(1) and

(3.1)

(2) and

(3.2)

Then (2.1)-(2.2) has a monotone solution.

Proof Define continuous functions as follows:

Claim A: is an upper solution to (2.1).

Moreover, let hold and satisfy

and

Evidently, is a lower solution to (2.1) (for the existence of and , we refer to Pan et al.[33]). By Lemma 2.2, we see that (2.1)-(2.2) has a monotone solution . Now, it suffices to prove Claim A.

If or , the result is clear. If , then

such that

which completes the proof on for .

We now consider with . If , then such that

and

Therefore, (3.1) leads to

If , then and (3.2) imply that

Therefore, Claim A is true. The proof is complete. □

Theorem 3.3Assume that one of the following items holds.

(1) and

(3.3)

(2) and

(3.4)

Then (2.1)-(2.2) has a monotone solution with.

Proof If (3.3) or (3.4) holds, then there exists a decreasing sequence with , such that for each , (2.1)-(2.2) has a positive monotone solution . Note that a traveling wave solution is invariant in the sense of phase shift, so we can assume that

(3.5)

for any n. By the Ascoli-Arzela lemma and a standard nested subsequence argument (see, e.g., Thieme and Zhao [47]), there exists a subsequence of , which is still denoted by without confusion, such that converges uniformly on every bounded interval, and hence pointwise on ℝ to a continuous function . Moreover, for each , we have

and the convergence in s is uniform for . Letting and using the dominated convergence theorem in , we know that also satisfies (2.1) with . In addition, the following items are also clear.

(T1) (by (3.5));

(T2) , are nondecreasing in ξ;

(T3) , , .

The items (T1) to (T3) further indicate that exists for . Denote

From (T1), it is clear that

If , then the dominated convergence theorem in implies that

Using the dominated convergence theorem in for , we get the following possible conclusions:

(L1) ;

(L2) .

If (L1) is true, then the dominated theorem in tells us

which implies a contradiction. If (L2) is true, then leads to

which is also a contradiction. What we have done implies that . Using the dominated convergence theorem in again, we see that and .

If , then a discussion similar to that on can be presented and we omit it here. Because , then the dominated convergence in as indicates that or . If is true, then holds and

has a monotone solution, which is impossible. Therefore, holds.

Thus, is a positive monotone solution of (2.1)-(2.2) with , the proof is complete. □

4 Nonexistence of traveling wave solutions

In this section, we shall formulate the nonexistence of invasion traveling wave solutions of (1.2) by the theory of asymptotic spreading. Before this, we first present a comparison principle formulated by Jin and Zhao [34], Theorem 2.3.

Lemma 4.1Assume that. If, , is bounded such that

(4.1)

then, , .

We now give the main result of this section.

Theorem 4.2If, then (2.1)-(2.2) has no positive solutions.

Proof Define

Then is evident.

If (2.1)-(2.2) has a positive solution for some , then

implies that also satisfies

(4.2)

with the following asymptotic boundary condition:

(4.3)

Recalling the definition of traveling wave solutions, we see that also satisfies

(4.4)

and

(4.5)

Using Lemmas 2.4 and 4.1, we see that

(4.6)

since .

However, the boundary condition (4.3) indicates that

and

(4.7)

which implies a contradiction between (4.6) and (4.7). The proof is complete. □

Remark 4.3 Under proper assumptions, we have obtained the threshold of the existence of positive solutions to (2.1)-(2.2).

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The main results in this article were derived by SP and GL. All authors read and approved the final manuscript.

Acknowledgements

The authors express their thanks to the referees for their helpful comments and suggestions on the manuscript. This work was partially supported by the Development Program for Outstanding Young Teachers in Lanzhou University of Technology (1010ZCX019), NSF of China (11101094) and FRFCU (lzujbky-2011-k27).

References

1. Ahmad, S, Lazer, AC, Tineo, A: Traveling waves for a system of equations. Nonlinear Anal. TMA. 68, 3909–3912 (2008). Publisher Full Text

2. Fei, N, Carr, J: Existence of travelling waves with their minimal speed for a diffusing Lotka-Volterra system. Nonlinear Anal., Real World Appl.. 4, 503–524 (2003). Publisher Full Text

3. Gourley, SA, Ruan, S: Convergence and traveling fronts in functional differential equations with nonlocal terms: a competition model. SIAM J. Math. Anal.. 35, 806–822 (2003). Publisher Full Text

4. Guo, JS, Liang, X: The minimal speed of traveling fronts for the Lotka-Volterra competition system. J. Dyn. Differ. Equ.. 23, 353–363 (2011). Publisher Full Text

5. Hosono, Y: The minimal speed of traveling fronts for a diffusive Lotka-Volterra competition model. Bull. Math. Biol.. 60, 435–448 (1998). Publisher Full Text

6. Huang, W: Problem on minimum wave speed for a Lotka-Volterra reaction-diffusion competition model. J. Dyn. Differ. Equ.. 22, 285–297 (2010). Publisher Full Text

7. Kan-on, Y, Fang, Q: Stability of monotone travelling waves for competition-diffusion equations. Jpn. J. Ind. Appl. Math.. 13, 343–349 (1996). Publisher Full Text

8. Lewis, MA, Li, B, Weinberger, HF: Spreading speed and linear determinacy for two-species competition models. J. Math. Biol.. 45, 219–233 (2002). PubMed Abstract | Publisher Full Text

9. Li, WT, Lin, G, Ruan, S: Existence of traveling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems. Nonlinearity. 19, 1253–1273 (2006). Publisher Full Text

10. Lin, G, Li, WT: Bistable wavefronts in a diffusive and competitive Lotka-Volterra type system with nonlocal delays. J. Differ. Equ.. 244, 487–513 (2008). PubMed Abstract | Publisher Full Text

11. Lin, G, Li, WT, Ma, M: Travelling wave solutions in delayed reaction diffusion systems with applications to multi-species models. Discrete Contin. Dyn. Syst., Ser. B. 19, 393–414 (2010)

12. Lv, G, Wang, M: Traveling wave front in diffusive and competitive Lotka-Volterra system with delays. Nonlinear Anal., Real World Appl.. 11, 1323–1329 (2010). Publisher Full Text

13. Murray, LD: Mathematical Biology, Heidelberg, Springer (1989)

14. Tang, MM, Fife, P: Propagating fronts for competing species equations with diffusion. Arch. Ration. Mech. Anal.. 73, 69–77 (1980). Publisher Full Text

15. Wang, M, Lv, G: Entire solutions of a diffusive and competitive Lotka-Volterra type system with nonlocal delays. Nonlinearity. 23, 1609–1630 (2010). Publisher Full Text

16. Yuan, Z, Zou, X: Co-invasion waves in a reaction diffusion model for competing pioneer and climax species. Nonlinear Anal., Real World Appl.. 11, 232–245 (2010). Publisher Full Text

17. Shigesada, N, Kawasaki, K: Biological Invasions: Theory and Practice, Oxford University Press, Oxford (1997)

18. Guo, JS, Wu, CH: Traveling wave front for a two-component lattice dynamical system arising in competition models. J. Differ. Equ.. 252, 4367–4391 (2012)

19. Yu, Z, Yuan, R: Travelling wave solutions in nonlocal reaction-diffusion systems with delays and applications. ANZIAM J.. 51, 49–66 (2009). Publisher Full Text

20. van den Driessche, P: Spatial structure: patch models. In: Brauer F, Driessche P, Wu J (eds.) Mathematical Epidemiology, pp. 179–189. Springer, Berlin (2008)

21. Bates, PW: On some nonlocal evolution equations arising in materials science. In: Brunner H, Zhao X, Zou X (eds.) Nonlinear Dynamics and Evolution Equations, pp. 13–52. Amer. Math. Soc., Providence (2006)

22. Bates, PW, Fife, PC, Ren, X, Wang, X: Traveling waves in a convolution model for phase transition. Arch. Ration. Mech. Anal.. 138, 105–136 (1997). Publisher Full Text

23. Bates, PW, Han, J: The Neumann boundary problem for a nonlocal Cahn-Hilliard equation. J. Differ. Equ.. 212, 235–277 (2005). Publisher Full Text

24. Bates, PW, Zhao, G: Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal. J. Math. Anal. Appl.. 332, 428–440 (2007). Publisher Full Text

25. Carr, J, Chmaj, A: Uniqueness of travelling waves for nonlocal monostable equations. Proc. Am. Math. Soc.. 132, 2433–2439 (2004). Publisher Full Text

26. Cortázar, C, Coville, J, Elgueta, M, Martínez, S: A nonlocal inhomogeneous dispersal process. J. Differ. Equ.. 241, 332–358 (2007). Publisher Full Text

27. Ermentrout, B, Mcleod, J: Existence and uniqueness of travelling waves for a neural network. Proc. R. Soc. Edinb. A. 123, 461–478 (1994)

28. Fife, PC: Some nonclassical trends in parabolic and parabolic-like evolutions. In: Kirkilionis M, Krömker S, Rannacher R, Tomi F (eds.) Trends in Nonlinear Analysis, pp. 153–191. Springer, Berlin (2003)

29. Kao, CY, Lou, Y, Shen, W: Random dispersal vs. non-local dispersal. Discrete Contin. Dyn. Syst.. 26, 551–596 (2010)

30. Shen, W, Zhang, A: Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats. J. Differ. Equ.. 249, 747–795 (2010). PubMed Abstract | Publisher Full Text

31. Yanagida, E, Zhang, L: Speeds of traveling waves in some integro-differential equations arising from neuronal networks. Jpn. J. Ind. Appl. Math.. 27, 347–373 (2010). Publisher Full Text

32. Zhang, G: Global stability of wavefronts with minimal speeds for nonlocal dispersal equations with degenerate nonlinearity. Nonlinear Anal.. 74, 6518–6529 (2011). Publisher Full Text

33. Pan, S, Li, WT, Lin, G: Travelling wave fronts in nonlocal delayed reaction-diffusion systems and applications. Z. Angew. Math. Phys.. 60, 377–392 (2009). PubMed Abstract | Publisher Full Text

34. Jin, Y, Zhao, XQ: Spatial dynamics of a periodic population model with dispersal. Nonlinearity. 22, 1167–1189 (2009). Publisher Full Text

35. Coville, J, Dupaigne, L: Propagation speed of travelling fronts in nonlocal reaction-diffusion equation. Nonlinear Anal. TMA. 60, 797–819 (2005). Publisher Full Text

36. Coville, J, Dupaigne, L: On a non-local equation arising in population dynamics. Proc. R. Soc. Edinb. A. 137, 725–755 (2007)

37. Li, WT, Sun, Y, Wang, ZC: Entire solutions in the Fisher-KPP equation with nonlocal dispersal. Nonlinear Anal., Real World Appl.. 11, 2302–2313 (2010). Publisher Full Text

38. Lv, G: Asymptotic behavior of traveling fronts and entire solutions for a nonlocal monostable equation. Nonlinear Anal. TMA. 72, 3659–3668 (2010). Publisher Full Text

39. Pan, S: Traveling wave fronts of delayed non-local diffusion systems without quasimonotonicity. J. Math. Anal. Appl.. 346, 415–424 (2008). Publisher Full Text

40. Pan, S, Li, WT, Lin, G: Existence and stability of traveling wavefronts in a nonlocal diffusion equation with delay. Nonlinear Anal. TMA. 72, 3150–3158 (2010). Publisher Full Text

41. Sun, Y, Li, WT, Wang, ZC: Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonlinearity. Nonlinear Anal. TMA. 74, 814–826 (2011). Publisher Full Text

42. Wu, S, Liu, S: Traveling waves for delayed non-local diffusion equations with crossing-monostability. Appl. Math. Comput.. 217, 1435–1444 (2010). Publisher Full Text

43. Xu, Z, Weng, P: Traveling waves in a convolution model with infinite distributed delay and non-monotonicity. Nonlinear Anal., Real World Appl.. 12, 633–647 (2011). Publisher Full Text

44. Zhang, G, Li, WT, Wang, ZC: Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity. J. Differ. Equ.. 252, 5096–5124 (2012). Publisher Full Text

45. Li, X, Lin, G: Traveling wavefronts in nonlocal dispersal and cooperative Lotka-Volterra system with delays. Appl. Math. Comput.. 204, 738–744 (2008). Publisher Full Text

46. Zhang, G, Li, WT, Lin, G: Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure. Math. Comput. Model.. 49, 1021–1029 (2009). Publisher Full Text

47. Thieme, HR, Zhao, XQ: Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction diffusion models. J. Differ. Equ.. 195, 430–470 (2003). Publisher Full Text