SpringerOpen Newsletter

Receive periodic news and updates relating to SpringerOpen.

Open Access Research

Positive periodic solutions for a second-order functional differential equation

Yongxiang Li* and Qiang Li

Author affiliations

Department of Mathematics, Northwest Normal University, Lanzhou, 730070, People’s Republic of China

For all author emails, please log on.

Citation and License

Boundary Value Problems 2012, 2012:140  doi:10.1186/1687-2770-2012-140

Published: 27 November 2012

Abstract

In this paper, the existence results of positive ω-periodic solutions are obtained for the second-order functional differential equation

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/140/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/140/mathml/M1">View MathML</a>

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/140/mathml/M2','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/140/mathml/M2">View MathML</a> is a continuous function which is ω-periodic in t, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/140/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/140/mathml/M3">View MathML</a> is a ω-periodic function, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/140/mathml/M4','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/140/mathml/M4">View MathML</a>. Our discussion is based on the fixed point index theory in cones.

MSC: 34C25, 47H10.

Keywords:
functional differential equation; positive periodic solution; cone; fixed point index