SpringerOpen Newsletter

Receive periodic news and updates relating to SpringerOpen.

Open Access Research

Existence and multiplicity of positive solutions for a class of p(x)-Kirchhoff type equations

Ruyun Ma, Guowei Dai* and Chenghua Gao

Author affiliations

Department of Mathematics, Northwest Normal University, Lanzhou 730070, P. R. China

For all author emails, please log on.

Citation and License

Boundary Value Problems 2012, 2012:16  doi:10.1186/1687-2770-2012-16

The electronic version of this article is the complete one and can be found online at: http://www.boundaryvalueproblems.com/content/2012/1/16


Received:24 September 2011
Accepted:13 February 2012
Published:13 February 2012

© 2012 Ma et al; licensee Springer.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this article, we study the existence and multiplicity of positive solutions for the Neumann boundary value problems involving the p(x)-Kirchhoff of the form

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M1">View MathML</a>

Using the sub-supersolution method and the variational method, under appropriate assumptions on f and M, we prove that there exists λ* > 0 such that the problem has at least two positive solutions if λ > λ*, at least one positive solution if λ = λ* and no positive solution if λ < λ*. To prove these results we establish a special strong comparison principle for the Neumann problem.

2000 Mathematical Subject Classification: 35D05; 35D10; 35J60.

Keywords:
p(x)-Kirchhoff; positive solution; sub-supersolution method; comparison principle

1 Introduction

In this article we study the following problem

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M2','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M2">View MathML</a>

where Ω is a bounded domain of ℝN with smooth boundary Ω and N ≥ 1, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M3">View MathML</a> is the outer unit normal derivative, λ ∈ ℝ is a parameter, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M4','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M4">View MathML</a> with 1 < p-: = infΩ p(x) ≤ p+ := supΩ p(x) < +∞, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M5','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M5">View MathML</a>, M(t) is a function with <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M6','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M6">View MathML</a> and satisfies the following condition:

(M0) M(t): [0, +∞) → (m0, +∞) is a continuous and increasing function with m0 > 0.

The operator -div(|∇u|p(x)-2u) := -Δp(x)u is said to be the p(x)-Laplacian, and becomes p-Laplacian when p(x) ≡ p (a constant). The p(x)-Laplacian possesses more complicated nonlinearities than the p-Laplacian; for example, it is inhomogeneous. The study of various mathematical problems with variable exponent growth condition has been received considerable attention in recent years. These problems are interesting in applications and raise many difficult mathematical problems. One of the most studied models leading to problem of this type is the model of motion of electrorheological fluids, which are characterized by their ability to drastically change the mechanical properties under the influence of an exterior electromagnetic field [1-3]. Problems with variable exponent growth conditions also appear in the mathematical modeling of stationary thermo-rheological viscous flows of non-Newtonian fluids and in the mathematical description of the processes filtration of an ideal barotropic gas through a porous medium [4,5]. Another field of application of equations with variable exponent growth conditions is image processing [6]. The variable nonlinearity is used to outline the borders of the true image and to eliminate possible noise. We refer the reader to [7-11] for an overview of and references on this subject, and to [12-16] for the study of the variable exponent equations and the corresponding variational problems.

The problem <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M7','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M7">View MathML</a> is a generalization of the stationary problem of a model introduced by Kirchhoff [17]. More precisely, Kirchhoff proposed a model given by the equation

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M8','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M8">View MathML</a>

(1.2)

where ρ, ρ0, h, E, L are constants, which extends the classical D'Alembert's wave equation, by considering the effect of the changing in the length of the string during the vibration. A distinguishing feature of Equation (1.2) is that the equation contains a nonlocal coefficient <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M9','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M9">View MathML</a> which depends on the average <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M10','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M10">View MathML</a>, and hence the equation is no longer a pointwise identity. The equation

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M11','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M11">View MathML</a>

(1.3)

is related to the stationary analogue of the Equation (1.2). Equation (1.3) received much attention only after Lions [18] proposed an abstract framework to the problem. Some important and interesting results can be found, for example, in [19-22]. Moreover, nonlocal boundary value problems like (1.3) can be used for modeling several physical and biological systems where u describes a process which depends on the average of itself, such as the population density [23-26]. The study of Kirchhoff type equations has already been extended to the case involving the p-Laplacian (for details, see [27-29]) and p(x)-Laplacian (see [30-33]).

Many authors have studied the Neumann problems involving the p-Laplacian, see e.g., [34-36] and the references therein. In [34,35] the authors have studied the problem <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M7','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M7">View MathML</a> in the cases of p(x) ≡ p = 2, M(t) ≡ 1 and of p(x) ≡ p > 1, M(t) ≡ 1, respectively. In [36], Fan and Deng studied the Neumann problems with p(x)-Laplacian, with the nonlinear potential f(x, u) under appropriate assumptions. By using the sub-supersolution method and variation method, the authors get the multiplicity of positive solutions of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M7','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M7">View MathML</a> with M(t) ≡ 1. The aim of the present paper is to generalize the main results of [34-36] to the p(x)-Kirchhoff case. For simplicity we shall restrict to the 0-Neumann boundary value problems, but the methods used in this article are also suitable for the inhomogeneous Neumann boundary value problems.

In this article we use the following notations:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M12','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M12">View MathML</a>

Λ = {λ ∈ ℝ: there exists at least a positive solution of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a>},

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M14','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M14">View MathML</a>

The main results of this article are the following theorems. Throughout the article we always suppose that the condition (M0) holds.

Theorem 1.1. Suppose that f satisfies the following conditions:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M15','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M15">View MathML</a>

(1.4)

and

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M16','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M16">View MathML</a>

(1.5)

Then <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M17','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M17">View MathML</a>, λ* ≥ 0 and *, +∞) ⊂ Λ. Moreover, for every λ > λ* problem <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a>has a minimal positive solution uλ in [0,w1], where w1 is the unique solution of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M18','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M18">View MathML</a>and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M19','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M19">View MathML</a>if λ* < λ2 < λ1.

Theorem 1.2. Under the assumptions of Theorem 1.1, also suppose that there exist positive constants M, c1 and c2 such that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M20','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M20">View MathML</a>

(1.6)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M21','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M21">View MathML</a>and 1 ≤ q(x) < p*(x) for <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M22','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M22">View MathML</a>, μ ∈ (0,1) such that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M23','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M23">View MathML</a>

(1.7)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M24','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M24">View MathML</a>and M1 > 0, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M25','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M25">View MathML</a>such that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M26','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M26">View MathML</a>

(1.8)

Then for each λ ∈ (λ*, +∞), <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a>has at least two positive solutions uλ and vλ, where uλ is a local minimizer of the energy functional and uλ vλ.

Theorem 1.3. (1) Suppose that f satisfies (1.4),

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M27','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M27">View MathML</a>

(1.9)

and the following conditions:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M28','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M28">View MathML</a>

(1.10)

where M2, c3 and c4 are positive constants, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M29','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M29">View MathML</a>and 1 ≤ r(x) < p(x) for <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M22','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M22">View MathML</a>. Then λ* = 0.

(2) If f satisfies (1.4)-(1.8), then λ* ∈ Λ.

Example 1.1. Let M(t) = a + bt, where a and b are positive constants. It is clear that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M30','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M30">View MathML</a>

Taking <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M31','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M31">View MathML</a>, we have

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M32','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M32">View MathML</a>

So the conditions (M0) and (1.7) are satisfied.

The underlying idea for proving Theorems 1.1-1.3 is similar to the one of [36]. The special features of this class of problems considered in the present article are that they involve the nonlocal coefficient M(t). To prove Theorems 1.1-1.3, we use the results of [37] on the global C1,α regularity of the weak solutions for the p(x)-Laplacian equations. The main method used in this article is the sub-supersolution method for the Neumann problems involving the p(x)-Kirchhoff. A main difficulty for proving Theorem 1.1 is that a special strong comparison principle is required. It is well known that, when p ≠ 2, the strong comparison principles for the p-Laplacian equations are very complicated (see e.g. [38-41]). In [13,42,43] the required strong comparison principles for the Dirichlet problems have be established, however, they cannot be applied to the Neumann problems. To prove Theorem 1.1, we establish a special strong comparison principle for the Neumann problem <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a> (see Lemma 4.6 in Section 4), which is also valid for the inhomogeneous Neumann boundary value problems.

In Section 2, we give some preliminary knowledge. In Section 3, we establish a general principle of sub-supersolution method for the problem <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a> based on the regularity results. In Section 4, we give the proof of Theorems 1.1-1.3.

2 Preliminaries

In order to discuss problem <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a>, we need some theories on W1,p(x) (Ω) which we call variable exponent Sobolev space. Firstly we state some basic properties of spaces W1,p(x) (Ω) which will be used later (for details, see [17]). Denote by S(Ω) the set of all measurable real functions defined on Ω. Two functions in S(Ω) are considered as the same element of S(Ω) when they are equal almost everywhere.

Write

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M33','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M33">View MathML</a>

and

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M34','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M34">View MathML</a>

with the norm

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M35','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M35">View MathML</a>

and

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M36','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M36">View MathML</a>

with the norm

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M37','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M37">View MathML</a>

Denote by <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M38">View MathML</a> the closure of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M39','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M39">View MathML</a> in W1,p(x) (Ω). The spaces Lp(x) (Ω), W1,p(x) (Ω) and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M38">View MathML</a> are all separable Banach spaces. When p- > 1 these spaces are reflexive.

Let λ > 0. Define for u W1,p(x) (Ω),

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M40','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M40">View MathML</a>

Then ||u||λ is a norm on W1,p(x) (Ω) equivalent to <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M41','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M41">View MathML</a>.

By the definition of ||u||λ we have the following

Proposition 2.1. [11,14]Put <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M42','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M42">View MathML</a>for λ > 0 and u W1,p(x) (Ω). We have:

(1) <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M43','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M43">View MathML</a>;

(2) <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M44">View MathML</a>;

(3) <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M45','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M45">View MathML</a>;

(4) <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M46','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M46">View MathML</a>.

Proposition 2.2. [14]If u, uk W1,p(x) (Ω), k = 1,2,..., then the following statements are equivalent each other:

(i) <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M47','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M47">View MathML</a>;

(ii) <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M48','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M48">View MathML</a>;

(iii) uk u in measure in Ω and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M49','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M49">View MathML</a>.

Proposition 2.3. [14]Let <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M50','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M50">View MathML</a>. If <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M21','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M21">View MathML</a>satisfies the condition

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M51','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M51">View MathML</a>

(2.1)

then there is a compact embedding W1,p(x) (Ω) ↪ Lq(x) (Ω).

Proposition 2.4. [14]The conjugate space of Lp(x) (Ω) is Lq(x) (Ω), where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M52','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M52">View MathML</a>. For any u Lp(x) (Ω) and v Lq(x) (Ω), we have the following Hölder-type inequality

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M53','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M53">View MathML</a>

Now, we discuss the properties of p(x)-Kirchhoff-Laplace operator

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M54','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M54">View MathML</a>

where λ > 0 is a parameter. Denotes

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M55','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M55">View MathML</a>

(2.2)

For simplicity we write X = W1,p(x) (Ω), denote by un u and un u the weak convergence and strong convergence of sequence {un} in X, respectively. It is obvious that the functional Φ is a Gâteaux differentiable whose Gâteaux derivative at the point u X is the functional Φ'(u) ∈ X*, given by

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M56','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M56">View MathML</a>

(2.3)

where 〈·, ·〉 is the duality pairing between X and X*. Therefore, the p(x)-Kirchhoff-Laplace operator is the derivative operator of Φ in the weak sense. We have the following properties about the derivative operator of Φ.

Proposition 2.5. If (M0) holds, then

(i) Φ': X X* is a continuous, bounded and strictly monotone operator;

(ii) Φ' is a mapping of type (S+), i.e., if un u in X and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M57','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M57">View MathML</a>, then un u in X;

(iii) Φ'(u): X X* is a homeomorphism;

(iv) Φ is weakly lower semicontinuous.

Proof. Applying the similar method to prove [15, Theorem 2.1], with obvious changes, we can obtain the conclusions of this proposition.

3 Sub-supersolution principle

In this section we give a general principle of sub-supersolution method for the problem <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a> based on the regularity results and the comparison principle.

Definition 3.1. u X is called a weak solution of the problem <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a> if for all v X,

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M58','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M58">View MathML</a>

In this article, we need the global regularity results for the weak solution of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a>. Applying Theorems 4.1 and 4.4 of [44] and Theorem 1.3 of [37], we can easily get the following results involving of the regularity of weak solutions of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a>.

Proposition 3.1. (1) If f satisfies (1.6), then u L(Ω) for every weak solution u of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a>.

(2) Let u X L(Ω) be a solution of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a>. If the function p is log-Hölder continuous on <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M59','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M59">View MathML</a>, i.e., there is a positive constant H such that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M60','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M60">View MathML</a>

(3.2)

then <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M61','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M61">View MathML</a>for some α ∈ (0,1).

(3) If in (2), the condition (3.2) is replaced by that p is Hölder continuous on <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M59','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M59">View MathML</a>, then <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M62','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M62">View MathML</a>for some α ∈ (0,1).

For u, v S(Ω), we write u v if u(x) ≤ v(x) for a.e. x ∈ Ω. In view of (M0), applying Theorem 1.1 of [16], we have the following strong maximum principle.

Proposition 3.2. Suppose that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M63','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M63">View MathML</a>, u X, u ≥ 0 and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M64','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M64">View MathML</a>in Ω. If

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M65','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M65">View MathML</a>

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M66','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M66">View MathML</a>, M(t) ≥ m0 > 0, 0 ≤ d(x) ∈ L(Ω), <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M67','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M67">View MathML</a>with p(x) ≤ q(x) ≤ p* (x), then u > 0 in Ω.

Definition 3.2. u X is called a subsolution (resp. supersolution) of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a> if for all v X with v ≥ 0, u ≤ 0 (resp. ≥) on Ω and

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M68','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M68">View MathML</a>

Theorem 3.1. Let λ > 0 and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M21','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M21">View MathML</a>satisfies (2.1). Then for each <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M69','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M69">View MathML</a>, the problem

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M70','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M70">View MathML</a>

(3.3λ)

has a unique solution u X.

Proof. According to Propositions 2.3 and 2.4, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M71','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M71">View MathML</a> (for any v X) defines a continuous linear functional on X. Since Φ' is a homeomorphism, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a> has a unique solution.

Let <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M21','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M21">View MathML</a> satisfy (2.1). For <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M69','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M69">View MathML</a>, we denote by K(h) = Kλ(h) = u the unique solution of (3.3λ). K = Kλ is called the solution operator for (3.3λ). From the regularity results and the embedding theorems we can obtain the properties of the solution operator K as follows.

Proposition 3.3. (1) The mapping <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M72','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M72">View MathML</a>is continuous and bounded. Moreover, the mapping <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M73','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M73">View MathML</a>is completely continuous since the embedding X Lq(x) (Ω) is compact.

(2) If p is log-Hölder continuous on <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M59','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M59">View MathML</a>, then the mapping <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M74','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M74">View MathML</a>is bounded, and hence the mapping <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M75','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M75">View MathML</a>is completely continuous.

(3) If p is Hölder continuous on <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M59','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M59">View MathML</a>, then the mapping <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M76','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M76">View MathML</a>is bounded, and hence the mapping <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M77','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M77">View MathML</a>is completely continuous.

Using the similar proof to [36], we have

Proposition 3.4. If <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M69','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M69">View MathML</a>and h ≥ 0, where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M21','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M21">View MathML</a>satisfies (2.1), then K(h) ≥ 0. If p C1(Ω), h L(Ω) and h ≥ 0, then K(h) > 0 on <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M59','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M59">View MathML</a>.

Now we give a comparison principle as follows.

Theorem 3.2. Let u, v X, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M78','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M78">View MathML</a>. If

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M79','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M79">View MathML</a>

(3.4)

with φ ≥ 0 and u v on ∂Ω, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M80','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M80">View MathML</a>, then u v in Ω.

Proof. Taking φ = (u - v)+ as a test function in (3.4), we have

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M81','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M81">View MathML</a>

Using the similar proof to Theorem 2.1 of [15] with obvious changes, we can show that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M82','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M82">View MathML</a>

Therefore, we get 〈Φ'(u) - Φ'(v), φ〉 = 0. Proposition 2.5 implies that φ ≡ 0 or u v in Ω. It follows that u v in Ω.

It follows from Theorem 3.2 that the solution operator K is increasing under the condition (M0), that is, K(u) ≤ K(v) if u v.

In this article we will use the following sub-supersolution principle, the proof of which is based on the well known fixed point theorem for the increasing operator on the order interval (see e.g., [45]) and is similar to that given in [12] for Dirichlet problems involving the p(x)-Laplacian.

Theorem 3.3. (A sub-supersolution principle) Suppose that u0, v0 X L(Ω), u0 and v0 are a subsolution and a supersolution of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a>respectively, and u0 v0. If f satisfies the condition:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M83','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M83">View MathML</a>

(3.5)

then <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a>has a minimal solution u* and a maximal solution v* in the order interval [u0,v0], i.e., u0 u* v* v0 and if u is any solution of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a>such that u0 u v0, then u* u v*.

The energy functional corresponding to <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a> is

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M84','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M84">View MathML</a>

(3.6)

The critical points of Jλ are just the solutions of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a>. Many authors, for example, Chang [46], Brezis and Nirenberg [47] and Ambrosetti et al. [48], have combined the sub-supersolution method with the variational method and studied successfully the semilinear elliptic problems, where a key lemma is that a local minimizer of the associated energy functional in the C1-topology is also a local minimizer in the H1-topology. Such lemma have been extended to the case of the p-Laplacian equations (see [43,49]) and also to the case of the p(x)-Laplacian equations (see [12, Theorem 3.1]). In [50], Fan extended the Brezis-Nirenberg type theorem to the case of the p(x)-Kirchhoff [50, Theorem 1.1]. The Theorem 1.1 of [50] concerns with the Dirichlet problems, but the method for proving the theorem is also valid for the Neumann problems. Thus we have the following

Theorem 3.4. Let λ > 0 and (1.6) holds. If <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M85','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M85">View MathML</a>is a local minimizer of Jλ in the <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M86','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M86">View MathML</a>-topology, then u is also a local minimizer of Jλ in the X-topology.

4 Proof of theorems

In this section we shall prove Theorems 1.1-1.3. Since only the positive solutions are considered, without loss of generality, we can assume that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M87','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M87">View MathML</a>

otherwise we may replace f(x,t) by f(+)(x,t), where

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M88','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M88">View MathML</a>

The proof of Theorem 1.1 consists of the following several Lemmata 4.1-4.6.

Lemma 4.1. Let (1.4) hold. Then λ > 0 if λ ∈ Λ.

Proof. Let λ ∈ Λ and u be a positive solution of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a>. Taking v ≡ 1 as a test function in Definition 3.1. (1) yields

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M89','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M89">View MathML</a>

(4.1)

which implies λ > 0 because the value of the right side in (4.1) is positive.

Lemma 4.2. Let (1.4) and (1.5) hold. Then <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M17','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M17">View MathML</a>.

Proof. By Theorem 3.1, Propositions 3.4 and 3.3. (3), the problem

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M90','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M90">View MathML</a>

(4.2)

has a unique positive solution <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M91','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M91">View MathML</a> and w1(x) ≥ ε > 0 for <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M22','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M22">View MathML</a>. We can assume ε ≤ 1. Put <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M92','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M92">View MathML</a> and λ1 = 1 + M3. Then

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M93','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M93">View MathML</a>

This shows that w1 is a supersolution of the problem <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M7','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M7">View MathML</a>. Obviously 0 is a subsolution of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M7','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M7">View MathML</a>. By Theorem 3.3, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M7','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M7">View MathML</a> has a solution <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M94','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M94">View MathML</a> such that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M95','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M95">View MathML</a>. By Proposition 3.4, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M96','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M96">View MathML</a> on <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M59','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M59">View MathML</a>. So λ1 ∈ Λ and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M17','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M17">View MathML</a>.

Lemma 4.3. Let (1.4) and (1.5) hold. If λ0 ∈ Λ, then λ ∈ Λ for all λ > λ0.

Proof. Let λ0 ∈ Λ and λ > λ0. Let <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M97','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M97">View MathML</a> be a positive solution of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M98','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M98">View MathML</a>. Then, we have

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M99','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M99">View MathML</a>

thanks to (M0). This shows that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M97','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M97">View MathML</a> is a supersolution of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a>. We know that 0 is a subsolution of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a> By Theorem 3.3, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a> has a solution uλ such that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M100','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M100">View MathML</a>. By Proposition 3.4, uλ > 0 on <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M59','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M59">View MathML</a>. Thus λ ∈ Λ.

Lemma 4.4. Let (1.4) and (1.5) hold. Then for every λ > λ*, there exists a minimal positive solution uλ of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a>such that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M101','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M101">View MathML</a>if λ* < λ2 < λ1.

Proof. The proof is similar to [36, Lemma 3.4], we omit it here.

Lemma 4.5. Let (1.4) and (1.5) hold. Let λ1, λ2 ∈ Λ and λ2 < λ < λ1. Suppose that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M94','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M94">View MathML</a>and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M102','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M102">View MathML</a>are the positive solutions of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M7','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M7">View MathML</a>and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M103','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M103">View MathML</a>respectively and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M101','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M101">View MathML</a>. Then there exists a positive solution vλ of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a>such that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M104','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M104">View MathML</a>and vλ is a global minimizer of the restriction of Jλ to the order interval <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M105','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M105">View MathML</a>.

Proof. Define <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M106','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M106">View MathML</a> by

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M107','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M107">View MathML</a>

Define <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M108','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M108">View MathML</a> and for all u X,

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M109','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M109">View MathML</a>

It is easy to see that the global minimum of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M110','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M110">View MathML</a> on X is achieved at some vλ X. Thus vλ is a solution of the following problem

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M111','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M111">View MathML</a>

(4.3)

and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M112','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M112">View MathML</a>. Noting that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M113','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M113">View MathML</a>

and λ2 < λ < λ1, since K is increasing operator, we obtain that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M104','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M104">View MathML</a>. So <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M114','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M114">View MathML</a>, and vλ is a positive solution of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a>. It is easy to see that there exists a constant c such that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M115','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M115">View MathML</a> for <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M116','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M116">View MathML</a>. Hence vλ is a global minimizer of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M117','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M117">View MathML</a>.

A key lemma of this paper is the following strong comparison principle.

Lemma 4.6 (A strong comparison principle). Let (1.4) and (1.5) hold. Let λ1, λ2 ∈ Λ and λ2 < λ1. Suppose that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M94','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M94">View MathML</a>and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M102','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M102">View MathML</a>are the positive solutions of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M118','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M118">View MathML</a>and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M119','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M119">View MathML</a>respectively. Then <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M19','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M19">View MathML</a>on <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M59','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M59">View MathML</a>.

Proof. Since <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M120','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M120">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M96','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M96">View MathML</a> on <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M59','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M59">View MathML</a>, in view of Lemma 4.4, there exist two positive constants b1 ≤ 1 and b2 such that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M121','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M121">View MathML</a>

For <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M122','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M122">View MathML</a>, setting <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M123','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M123">View MathML</a>, then

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M124','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M124">View MathML</a>

Taking an ε > 0 sufficiently small such that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M125','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M125">View MathML</a>

and

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M126','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M126">View MathML</a>

then

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M127','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M127">View MathML</a>

consequently, vε is a solution of the problem

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M128','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M128">View MathML</a>

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M129','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M129">View MathML</a>. With other words, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M130','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M130">View MathML</a>, where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M131','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M131">View MathML</a> is the solution operator of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M132','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M132">View MathML</a>. Since <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M133','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M133">View MathML</a>, where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M134','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M134">View MathML</a>, noting that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M131','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M131">View MathML</a> is increasing, we have <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M135','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M135">View MathML</a>, that is, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M136','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M136">View MathML</a> on <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M59','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M59">View MathML</a>.

The proof of Theorem 1.1 is complete. Let us now turn to the proof of Theorem 1.2.

Proof of Theorem 1.2. Let (1.4)-(1.8) hold. Let λ > λ*. Take λ1, λ2 ∈ Λ such that λ2 < λ < λ1 and let <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M137','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M137">View MathML</a> be as in Lemma 4.5.

We claim that uλ is a local minimizer of Jλ in the X-topology.

Indeed, Lemma 4.6 implies that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M138','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M138">View MathML</a> on <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M59','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M59">View MathML</a>. It follows that there is a C0-neighborhood U of uλ such that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M139','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M139">View MathML</a>, consequently uλ is a local minimizer of Jλ in the C0-topology, and of course, also in the C1-topology. By Theorem 3.4, uλ is also a local minimizer of Jλ in the X-topology.

Define

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M140','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M140">View MathML</a>

and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M141','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M141">View MathML</a>. Consider the problem

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M142','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M142">View MathML</a>

and denote by <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M143','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M143">View MathML</a> the energy functional corresponding to (4.4λ). By the definition of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M144','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M144">View MathML</a>, we have <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M145','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M145">View MathML</a> for every u X. Hence, for each solution u of (4.4λ), we have that u uλ, consequently <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M146','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M146">View MathML</a> and u is also a solution of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a>. It is easy to see that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M94','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M94">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M102','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M102">View MathML</a> are a subsolution and a supersolution of (4.4λ) respectively. By Theorems 3.3 and 1.2, there exists <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M147','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M147">View MathML</a> such that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M148','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M148">View MathML</a> is a solution of (4.4λ) and is a local minimizer of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M143','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M143">View MathML</a> in the C1-topology. As was noted above, we know that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M149','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M149">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M148','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M148">View MathML</a> is also a solution of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a>. If <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M150','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M150">View MathML</a>, then the assertion of Theorem 1.2 already holds, hence we can assume that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M151','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M151">View MathML</a>. Now uλ is a local minimizer of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M143','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M143">View MathML</a> in the C1-topology, and so also in the X-topology. We can assume that uλ is a strictly local minimizer of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M143','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M143">View MathML</a> in the X-topology, otherwise we have obtained the assertion of Theorem 1.2. It is easy to verify that, under the assumptions of Theorem 1.3, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M152','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M152">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M143','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M143">View MathML</a> satisfies the (P.S.) condition (see e.g., [30]). It follows from the condition (1.7) and (1.8) that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M153','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M153">View MathML</a> (see e.g., [30]). Using the mountain pass lemma (see [51]), we know that (4.4λ) has a solution vλ such that vλ uλ. vλ, as a solution of (4.4λ), must satisfy vλ uλ, and vλ is also a solution of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a>. The proof of Theorem 1.2 is complete.

Proof of Theorem 1.3. (1) Let f satisfy (1.4), (1.9), and (1.10). For given any λ > 0, consider the energy functional Jλ defined by (3.3). By (1.10) and noting that r(x) < p(x) for <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M22','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M22">View MathML</a>, there is a positive constant M4 such that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M154','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M154">View MathML</a>

(4.5)

For u X with ||u||λ ≥ 1, we have that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M155','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M155">View MathML</a>

where c5 is a positive constant. This shows that Jλ(u) → +∞ as ||u||λ → +∞, that is, Jλ is coercive. In view of Proposition 2.5. (iv), the condition (1.10) also implies that Jλ is weakly sequentially lower semi-continuous. Thus Jλ has a global minimizer u0. Put v0(x) = |u0(x)| for <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M22','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M22">View MathML</a>. It is easy to see that Jλ(v0) ≤ Jλ(u0), consequently, v0 is a global minimizer of Jλ and is a positive solution of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a>. This shows that λ ∈ Λ for all λ > 0. Hence λ* = 0 and the statement (1) is proved.

To prove Theorem 1.3. (2) we give the following lemma.

Lemma 4.7. Let (1.4) and (1.5) hold. Then for each λ > λ*, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a>has a positive solution uλ such that Jλ(uλ) ≤ 0.

Proof. Let λ > λ*. Take λ2 ∈ (λ*, λ) and let <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M102','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M102">View MathML</a> be a positive solution of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M103','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M103">View MathML</a>. then <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M102','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M102">View MathML</a> is a supersolution of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a>. We know that 0 is a subsolution of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a>. Analogous to the proof of Lemma 4.5, we can prove that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M13">View MathML</a> has a positive solution <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M156','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M156">View MathML</a> such that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M157','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M157">View MathML</a>. So Jλ(uλ) ≤ Jλ(0) = 0.

Proof of Theorem 1.3. (2). Let (1.4)-(1.8) hold. Let λn > λ* and λn → λ* as n → +∞. By Lemma 4.7, for each n, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M158','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M158">View MathML</a> has a positive solution <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M159','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M159">View MathML</a> such that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M160','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M160">View MathML</a>, that is

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M161','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M161">View MathML</a>

Since <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M159','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M159">View MathML</a> is a solution of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M158','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M158">View MathML</a>, we have that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M162','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M162">View MathML</a>

It follows from (1.8) that there exists a positive constant c6 such that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M163','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M163">View MathML</a>

Thus, using condition (1.7), we have that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M164','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M164">View MathML</a>

and consequently,

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M165','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M165">View MathML</a>

where the positive constant c7 is independent of n. This shows that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M166','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M166">View MathML</a> is bounded. Noting that λn → λ* > 0, we have that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M167','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M167">View MathML</a> is bounded. Without loss of generality, we can assume that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M168','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M168">View MathML</a> in X and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M169','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M169">View MathML</a> for a.e. x ∈ Ω. By (1.6) and the L(Ω)-regularity results of [44], the boundedness of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M167','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M167">View MathML</a> implies the boundedness of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M170','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M170">View MathML</a>. By the <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M171','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M171">View MathML</a>-regularity results of [37], the boundedness of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M170','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M170">View MathML</a> implies the boundedness of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M172','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M172">View MathML</a>, where α ∈ (0, 1) is a constant. Thus we have <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M168','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M168">View MathML</a> in <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M173','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M173">View MathML</a>. For every v X, since <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M159','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M159">View MathML</a> is a solution of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M158','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M158">View MathML</a>, we have that, for each n,

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M174','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M174">View MathML</a>

Passing the limit of above equality as n → +∞, yields

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M175','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M175">View MathML</a>

which shows that u* is a solution of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M176','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M176">View MathML</a>. Obviously u* ≥ 0 and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M177','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M177">View MathML</a>. Hence u* is a positive solution of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M176','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/16/mathml/M176">View MathML</a> and λ* ∈ Λ.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

GD conceived of the study, and participated in its design and coordination and helped to draft the manuscript. RM participated in the design of the study. All authors read and approved the final manuscript.

Acknowledgements

The authors are very grateful to the anonymous referees for their valuable suggestions. Research supported by the NSFC (Nos. 11061030 and 10971087), NWNU-LKQN-10-21.

References

  1. Růžička, M: Electrorheological Fluids: Modeling and Mathematical Theory. Springer, Berlin (2000)

  2. Mihăilescu, M, Rădulescu, V: A mulyiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc R Soc A. 462, 2625–2641 (2006). Publisher Full Text OpenURL

  3. Zhikov, VV: Averaging of functionals of the calculus of variations and elasticity theory. Math USSR Izv. 9, 33–66 (1987)

  4. Antontsev, SN, Shmarev, SI: A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions. Nonlinear Anal TMA. 60, 515–545 (2005)

  5. Antontsev, SN, Rodrigues, JF: On stationary thermo-rheological viscous flows. Ann Univ Ferrara Sez Sci Mat. 52, 19–36 (2006). Publisher Full Text OpenURL

  6. Chen, Y, Levine, S, Rao, M: Variable exponent, linear growth functionals in image restoration. SIAM J Appl Math. 66(4), 1383–1406 (2006). Publisher Full Text OpenURL

  7. Harjulehto, P, Hästö, P: An overview of variable exponent Lebesgue and Sobolev spaces. In: Herron, D (eds.) Future Trends in Geometric Function Theory, pp. 85–93. RNC Workshop, Jyväskylä (2003)

  8. Samko, S: On a progress in the theory of Lebesgue spaces with variable exponent maximal and singular operators. Integr Trans Spec Funct. 16, 461–482 (2005). Publisher Full Text OpenURL

  9. Zhikov, VV, Kozlov, SM, Oleinik, OA: Homogenization of Differential Operators and Integral Functionals (Translated from the Russian by Yosifian, GA). Springer-Verlag, Berlin (1994)

  10. Zhikov, VV: On some variational problems. Russ J Math Phys. 5, 105–116 (1997)

  11. Kováčik, O, Rákosník, J: On spaces Lp(x) (Ω) and Wk,p(x) (Ω). Czechoslovak Math J. 41(116), 592–618 (1991)

  12. Fan, XL: On the sub-supersolution methods for p(x)-Laplacian equations. J Math Anal Appl. 330, 665–682 (2007). Publisher Full Text OpenURL

  13. Fan, XL, Zhang, QH: Existence of solutions for p(x)-Laplacian Dirichlet problems. Non-linear Anal. 52, 1843–1852 (2003)

  14. Fan, XL, Zhao, D: On the Spaces Lp(x) and Wm,p(x). J Math Anal Appl. 263, 424–446 (2001). Publisher Full Text OpenURL

  15. Dai, G, Ma, R: Solutions for a p(x)-Kirchhoff type equation with Neumann boundary data. Nonlinear Anal Real World Appl. 12, 2666–2680 (2011). Publisher Full Text OpenURL

  16. Fan, XL, Zhao, YZ, Zhang, QH: A strong maximum principle for p(x)-Laplace equations. Chin J Contemp Math. 24(3), 277–282 (2003)

  17. Kirchhoff, G: Mechanik. Teubner, Leipzig (1883)

  18. Lions, JL: On some equations in boundary value problems of mathematical physics. Contemporary Developments in Continuum Mechanics and Partial Differential Equations (Proc Internat Sympos Inst Mat Univ Fed Rio de Janeiro Rio de Janeiro 1977), pp. 284–346. North-Holland Math. Stud., vol. 30, North-Holland, Amsterdam (1978)

  19. Arosio, A, Pannizi, S: On the well-posedness of the Kirchhoff string. Trans Am Math Soc. 348, 305–330 (1996). Publisher Full Text OpenURL

  20. Cavalcante, MM, Cavalcante, VN, Soriano, JA: Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation. Adv Diff Equ. 6, 701–730 (2001)

  21. D'Ancona, P, Spagnolo, S: Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent Math. 108, 247–262 (1992). Publisher Full Text OpenURL

  22. He, X, Zou, W: Infinitely many positive solutions for Kirchhoff-type problems. Nonlinear Anal. 70, 1407–1414 (2009). Publisher Full Text OpenURL

  23. Chipot, M, Rodrigues, JF: On a class of nonlocal nonlinear elliptic problems. RAIRO Model Math Anal. 26, 447–467 (1992)

  24. Chipot, M, Lovat, B: Some remarks on nonlocal elliptic and parabolic problems. Nonlinear Anal. 30, 4619–4627 (1997). Publisher Full Text OpenURL

  25. Alves, CO, Corrêa, FJSA: On existence of solutions for a class of problem involving a nonlinear operator. Comm Appl Nonlinear Anal. 8, 43–56 (2001)

  26. Corrêa, FJSA, Menezes, SDB, Ferreira, J: On a class of problems involving a nonlocal operator. Appl Math Comput. 147, 475–489 (2004). Publisher Full Text OpenURL

  27. Corrêa, FJSA, Figueiredo, GM: On a elliptic equation of p-kirchhoff type via variational methods. Bull Aust Math Soc. 74, 263–277 (2006). Publisher Full Text OpenURL

  28. Dreher, M: The Kirchhoff equation for the p-Laplacian. Rend Semin Mat Univ Politec Torino. 64, 217–238 (2006)

  29. Dreher, M: The ware equation for the p-Laplacian. Hokkaido Math J. 36, 21–52 (2007)

  30. Dai, G, Hao, R: Existence of solutions for a p(x)-Kirchhoff-type equation. J Math Anal Appl. 359, 275–284 (2009). Publisher Full Text OpenURL

  31. Fan, XL: On nonlocal p(x)-Laplacian Dirichlet problems. Nonlinear Anal. 72, 3314–3323 (2010). Publisher Full Text OpenURL

  32. Dai, G, Liu, D: Infinitely many positive solutions for a p(x)-Kirchhoff-type equation. J Math Anal Appl. 359, 704–710 (2009). Publisher Full Text OpenURL

  33. Dai, G, Wei, J: Infinitely many non-negative solutions for a p(x)-Kirchhoff-type problem with Dirichlet boundary condition. Nonlinear Anal. 73, 3420–3430 (2010). Publisher Full Text OpenURL

  34. Deng, YB, Peng, SJ: Existence of multiple positive solutions for inhomogeneous Neumann problem. J Math Anal Appl. 271, 155–174 (2002). Publisher Full Text OpenURL

  35. Abreu, EAM, Marcos do, ÓJ, Medeiros, ES: Multiplicity of positive solutions for a class of quasilinear nonhomogeneous Neumann problems. Nonlinear Anal. 60, 1443–1471 (2005). Publisher Full Text OpenURL

  36. Fan, XL, Deng, SG: Multiplicity of positive solutions for a class of inhomogeneous Neumann problems involving the p(x)-Laplacian. In: Nonlinear Diff Equ Appl (NoDEA). 16(2), 255–271

  37. Fan, XL: Global C1,α regularity for variable exponent elliptic equations in divergence form. J Diff Equ. 235, 397–417 (2007). Publisher Full Text OpenURL

  38. Damascelli, L, Sciunzi, B: Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-Laplace equations. Calc var PDE. 25, 139–159 (2005)

  39. Damascelli, L, Sciunzi, B: Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations. J Diff Equ. 206, 483–515 (2004). Publisher Full Text OpenURL

  40. Gilbarg, D, Trudinger, NS: Elliptic partial differential equations of second order. Springer, Berlin (1983)

  41. Pucci, P, Serrin, J: The strong maximum principle revisited. J Diff Equ. 196, 1–66 (2004). Publisher Full Text OpenURL

  42. Guedda, M, Veron, L: Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal. 13, 879–902 (1989). Publisher Full Text OpenURL

  43. Guo, ZM, Zhang, ZT: W1,p versus C1 local minimizers and multiplicity results for quasilinear elliptic equations. J Math Anal Appl. 286, 32–50 (2003). Publisher Full Text OpenURL

  44. Fan, XL, Zhao, D: A class of De Giorgi type and Hölder continuity. Nonlinear Anal. 36, 295–318 (1996)

  45. Amann, H: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18, 620–709 (1976). Publisher Full Text OpenURL

  46. Chang, KC: A variant of mountain pass lemma. Scientia Sinica Ser A. 26, 1241–1255 (1983)

  47. Brezis, H, Nirenberg, L: H1 versus C1 local minimizers. C R Acad Sci Paris Ser I Math. 317, 465–472 (1993)

  48. Ambrosetti, A, Brezis, H, Cerami, G: Combined effects of concave and convex nonlinearities in some elliptic problems. J Funct Anal. 122, 519–543 (1994). Publisher Full Text OpenURL

  49. Azorero, JG, Manfredi, JJ, Alonso, IP: Sobolev versus Hölder local minimizer and global multiplicity for some quasilinear elliptic equations. Commun Contemp Math. 2, 385–404 (2000)

  50. Fan, XL: A Brezis-Nirenberg type theorem on local minimizers for p(x)-Kirchhoff Dirichlet problems and applications. Diff Equ Appl. 2(4), 537–551 (2010)

  51. Ambrosetti, A, Rabinowitz, P: Dual variational methods in critical point theory and applications. J Funct Anal. 14, 349–381 (1973). Publisher Full Text OpenURL