Abstract
In this paper, we study the existence and multiplicity results of solutions for some class of fractional differential inclusions with boundary conditions. Some existence and multiplicity results of solutions are given by using the least action principle and minmax methods in nonsmooth critical point theory. Recent results in the literature are generalized and improved. Some examples are given in the paper to illustrate our main results.
MSC: 26A33, 26A42, 58E05, 70H05.
Keywords:
fractional differential inclusions; nonsmooth critical point theory; boundary value problem; variational methods1 Introduction
In this paper, we consider the fractional boundary value problem (BVP for short) for the following differential inclusion:
where , and are the left and right RiemannLiouville fractional integrals of order respectively, satisfies the following assumptions:
(A) is measurable in t for every and locally Lipschitz in x for a.e. , and there exist and such that
Differential equations with fractional order are generalization of ordinary differential equations to noninteger order. Fractional differential equations have received increasing attention during recent years, since the behavior of physical systems can be properly described by using fractional order system theory. So fractional differential equations got the attention of many researchers and considerable work has been done in this regard, see the monographs and articles of Kilbas et al.[1], Miller and Ross [2], Podlubny [3], Samko et al.[4], Agarwal [5], Lakshmikantham [6] and Vasundhara Devi [7] and the references therein.
Recently, fractional differential equations have been of great interest, and boundary value problems for fractional differential equations have been considered by the use of techniques of nonlinear analysis (fixedpoint theorems [810], LeraySchauder theory [11,12], lower and upper solution method, monotone iterative method [1315]).
Variational methods have turned out to be a very effective analytical tool in the study of nonlinear problems. The classical critical point theory for functional was developed in the sixties and seventies (see [16,17]). The celebrated and important result in the last 30 years was the mountain pass theorem due to Ambrosetti and Rabinowitz [18] in 1973. The needs of specific applications (such as nonsmooth mechanics, nonsmooth gradient systems, etc.) and the impressive progress in nonsmooth analysis and multivalued analysis led to extensions of the critical point theory to nondifferentiable functions, locally Lipschitz functions in particular. The nonsmooth critical point theory for locally Lipschitz functions started with the work of Chang (see [19]). The theory of Chang was based on the subdifferential of locally Lipschitz functionals due to Clarke (see [20]). Using this subdifferential, Chang proposed a generalization of the wellknown PalaisSmale condition and obtained various minimax principles concerning the existence and characterization of critical points for locally Lipschitz functions. Chang used his theory to study semilinear elliptic boundary value problems with a discontinuous nonlinearity. Later, in 2000, Kourogenis and Papageorgiou (see [21]) extended the theory of Chang and obtained some nonsmooth critical point theories and applied these to nonlinear elliptic equations at resonance, involving the pLaplacian with discontinuous nonlinearities. Subsequently, many authors also studied the nonsmooth critical point theory (see [2226]), then the nonsmooth critical point theory is also widely used to deal with nonlinear boundary value problems (see [2731]). A good survey for nonsmooth critical point theory and nonlinear boundary value problems is the book of Gasinski and Papageorgiou [32].
There are some papers which are devoted to the boundary value problems for fractional differential inclusions (see [3335]), and the main tools they use are fixed point theory for multivalued contractions. However, to the best of the authors’ knowledge, there are few results on the solutions to fractional BVP which were established by the nonsmooth critical point theory, since it is often very difficult to establish a suitable space and variational functional for fractional differential equations with boundary conditions. Recently, Jiao and Zhou [36] introduced some appropriate function spaces as their working space and set up a variational functional for the following system:
where , and are the left and right RiemannLiouville fractional integrals of order respectively, and F is continuously differentiable.
They give two existence results of solutions for the above system by using the least action principle and mountain pass theorem in critical point theory. It is easy to see that system (1.1) is a generalization to system (1.2), and it is interesting to ask whether the results in [36] hold true when the potential F is just locally Lipschitz. But the main difficulty is the variational structure given in [36] cannot be applied to system (1.1) directly. So we have to find a new approach to solve this problem, and the main idea of the new approach comes from the inspiration of Theorem 2.7.3 and Theorem 2.7.5 in [20].
The structure of the paper is as follows. In the next section, for the convenience of readers, we present the mathematical background needed and the corresponding variational structure for system (1.1). In Section 3, using variational methods, we prove two existence theorems for the solutions of problem (1.1) which generalize the results in [36]. Finally, in Section 4, two examples are presented to illustrate our results.
2 Preliminaries
Definition 2.1 (Left and right RiemannLiouville fractional integrals)
Let f be a function defined on . The left and right RiemannLiouville fractional integrals of order γ for function f, denoted by and respectively, are defined by
and
provided the righthand sides are pointwise defined on , where Γ is the gamma function.
Definition 2.2 (Left and right RiemannLiouville fractional derivatives) Let f be a function defined on . The left and right RiemannLiouville fractional derivatives of order γ for function f, denoted by and respectively, are defined by
and
Definition 2.3 (Left and right Caputo fractional derivatives)
(i) If and , then the left and right Caputo fractional derivatives of order γ for function f, denoted by and respectively, exist almost everywhere on . and are represented by
and
respectively, where . In particular, if , then
and
(ii) If and , then and are represented by
Property 2.1 ([36])
The left and right RiemannLiouville fractional integral operators have the property of a semigroup, i.e.,
at any point for a continuous function f and for almost every point in if the function .
Definition 2.4 ([36])
Define and . The fractional derivative space is defined by the closure of with respect to the norm
where denotes the set of all functions with . It is obvious that the fractional derivative space is the space of functions having an αorder Caputo fractional derivative and .
Proposition 2.1 ([36])
Letand. The fractional derivative spaceis a reflexive and separable Banach space.
Proposition 2.2 ([36])
According to (2.1), we can consider with respect to the norm
Proposition 2.3 ([36])
Defineand. Assume thatand the sequenceconverges weakly touin, i.e., . Thenin, i.e., , as.
In this paper, we treat BVP (1.1) in the Hilbert space with the equivalent norm defined in (2.3).
Proposition 2.4 ([36])
In order to establish the variational structure for system (1.1), it is necessary to construct some appropriate function spaces. The Cartesian product space defined by
is also a reflexive and separable Banach space with respect to the norm
The space is a closed subset of under the norm (2.4) as is closed by Definition 2.4.
In this paper, we use the norm defined in (2.3), which is an equivalent norm in with norm (2.4).
Definition 2.5 Let denote the space of essentially bounded measurable functions from into under the norm
It is obvious that is a Banach space under the norm (2.5).
Remark 2.5 We use and to denote and respectively.
Definition 2.6 ([13])
Let f be Lipschitz near a given point x in a Banach space X, and v be any other vector in X. The generalized directional derivative of f at x in the direction v, denoted by , is defined as follows:
where y is also a vector in X and λ is a positive scalar, and we denote by
the generalized gradient of f at x (the Clarke subdifferential).
Lemma 2.1 ([20])
Letxandybe points in a Banach spaceX, and suppose thatfis Lipschitz on an open set containing the line segment. Then there exists a pointuinsuch that
Definition 2.7 ([32])
A point is said to be a critical point of a locally Lipschitz f if , namely for every . A real number c is called a critical value of f if there is a critical point such that .
Definition 2.8 ([32])
If f is a locally Lipschitz function, we say that f satisfies the nonsmooth (P.S.) condition if each sequence in X such that is bounded and has a convergent subsequence, where .
Clarke considered the following abstract framework in [20]:
• let be a σfinite positive measure space, and let Y be a separable Banach space;
• let Z be a closed subspace of , where denotes the space of measure essentially bounded functions mapping S to Y, equipped with the usual supremum norm;
• define a functional f on Z via
where Z is a closed subspace of and is a given family of functions;
• suppose that the mapping is measurable for each v in Y, and that x is a point at which is defined (finitely);
• suppose that there exist and a function in such that
Under the conditions described above, f is Lipschitz in a neighborhood of x and one has
Further, if each is regular at for each t, then f is regular at x and the equality holds.
Remark 2.6 The interpretation of (2.7) is as follows: To every , there is a corresponding mapping from S to with
and having the property that for every v in Z, one has
Thus, every ζ in the lefthand side of (2.7) is an element of that can be written
where is a measurable selection of .
Lemma 2.2LetFsatisfy the condition (A) andbe given by, then define a functionalfonby
Thenfis Lipschitz on, and one has
Proof Take an arbitrary element in , then it suffices to prove f is Lipschitz on .
by Proposition 2.2, where . In view of Lemma 2.1 and , one has
By (2.9) and (2.10), we have
for any in by Fatou’s lemma, and it is obvious that
for a.e. and all in . Then we conclude
by (2.12) for any in and (2.13) remains true if we restrict to , which is a closed subspace of by Definition 2.4. The bounded linear functional ζ on restricted to is also a bounded linear functional, and we use to denote the functional restricted on .
We interpret (2.13) by saying that belongs to the subgradient at of the convex functional
which is defined in , where for all in . In view of condition (A) and (2.12), we have
Now we can apply Clarke’s abstract framework to with the following cast of characters:
• with the Lebesgue measure, and let , which is a separable Banach space with the norm ;
• let , which is a closed subspace of , and denotes the space of measure essentially bounded functions mapping T to Y, equipped with the usual supremum norm by Definition 2.5;
• define a functional on Z by (2.14);
• the mapping is measurable for each in (see [20]), and that is a point at which is defined (finitely);
• the condition (2.6) in Clarke’s abstract framework is satisfied by (2.15).
By (2.12), we get
When , it is obvious that and is dense in by Definition 2.4. So for each , we can choose such that
Combining (2.16) and (2.17), we have
and this completes the proof. □
Remark 2.7 The interpretation of expression (2.8) is as follows: If is an element in and , we deduce the existence of a measurable function such that
if on , then we can define on by
for all , it is easy to verify .
Similarly, if on , then we can define on by
for all , and it is easy to verify .
Lemma 2.3The corresponding functionalsandonare given by
and
whereFsatisfies the condition (A) and, then the functional defined by
Proof By direct computation, it is obvious that
In view of Lemma 2.2 and Remark 2.7, if , then we have
Since , (2.21) holds by (2.22) and (2.23), and this completes the proof. □
Making use of Property 2.1 and Definition 2.3, for any , BVP (1.1) is equivalent to the following problem:
where . Therefore, we seek a solution u of BVP (2.24), which corresponds to the solution u of BVP (1.1) provided that .
then we are in a position to give the definition of the solution of BVP (2.24).
Definition 2.9 A function is called a solution of BVP (2.24) if
(i) is differentiable for almost every .
(ii) u satisfies (2.24).
Lemma 2.4Let, andφis defined by (2.20). If assumption (A) is satisfied andis a solution of the corresponding Euler equation, thenuis a solution of BVP (2.24) which, of course, corresponds to the solution of BVP (1.1).
Proof By Lemma 2.3, we have
so that
By the Fubini theorem and noting that , we obtain
Hence, by (2.26) we have, for every ,
If denotes the Canonical basis of , we can choose such that
The theory of Fourier series and (2.27) imply that
a.e. on for some . According to the definition of , we have
In view of , we shall identify the equivalence class given by its continuous representant
Therefore, it follows from (2.28) and the classical result of the Lebesgue theory that is the classical derivative of a.e. on which means that (i) in Definition 2.9 is verified.
Since implies that , it remains to show that u satisfies (2.24). In fact, according to (2.29), we can get that
Lemma 2.5 ([32])
LetXbe a real reflexive Banach space. If the functionalψ: is weakly lower semicontinuous and coercive, i.e., , then there existssuch that. Moreover, then.
Lemma 2.6 ([32])
LetXbe a real reflexive Banach space, andis a locally Lipschitz function. If there existandsuch that,
andψsatisfies the nonsmooth (P.S.) condition with
where
Thenandcis a critical value ofψ.
Definition 2.10 ([37])
Assume that the compact group G acts diagonally on , that is,
where V is a finite dimensional space. The action of G is admissible if every continuous equivariant map has a zero, where U is an open bounded invariant neighborhood of 0 in , .
Example 2.1 The antipodal action of on is admissible.
We consider the following situation:
(A1) The compact group G acts isometrically on the Banach space , the space is invariant and there exists a finite dimensional space V such that for each , and the action of G on V is admissible.
Lemma 2.7 ([27])
Supposeis an invariant locally Lipschitz functional. If, for every, there existsuch that
(A4) φsatisfies the nonsmooth (P.S.)_{c}condition for every.
Thenφhas an unbounded sequence of critical values.
Remark 2.8 The condition (A1) is needed for the proof of Lemma 2.7, see details in [27] and the references therein.
3 Main results and proofs of the theorems
Theorem 3.1LetandFsatisfy the condition (A), and suppose the following conditions hold:
Then system (1.1) has at least one solution on.
Proof Let such that is bounded and as . First, we prove is a bounded sequence. Take such that , then there exists such that
for all . It follows from (3.1) that
By (A) and the nonsmooth (P.S.) condition, we have
is bounded, which combined with (3.2) implies that is bounded in since .
By Proposition 2.3, the sequence has a subsequence, also denoted by , such that
and is bounded, where is a positive constant.
Therefore, we have , where is the function from the nonsmooth (P.S.) condition, and such that
By (3.4) and (3.5), it is easy to verify that as , and hence that in . Thus, admits a convergent subsequence.
In view of (B3), there exist two positive constants and such that
for a.e. and . It follows from that
for all and a.e. . Therefore, we obtain
by (3.6), where is a positive constant. Then there exists a sufficiently large such that .
By (B2), there exists and such that
Let and . Then it follows from (2.2) that
for all with . Therefore, we have
for all with . This implies all the conditions in Lemma 2.6 are satisfied, so there exists a critical point for φ and , and this completes the proof. □
Theorem 3.2LetFsatisfy (A), (B1), (B3) and the following conditions:
Then system (1.1) has an infinite number of solutionsonfor every positive integerksuch that, as.
Proof The proof that the functional φ satisfies the nonsmooth (P.S.) condition is the same as that of Theorem 3.1, so we omit it. We only need to verify other conditions in Lemma 2.7.
Since is a separable and reflexive Banach space, there exist (see [38]) and such that
and it is easy to verify that defined by (3.9) is a norm of . Since all the norms of a finite dimensional normed space are equivalent, there exists a positive constant such that
In view of (B3), there exist two positive constants and such that
for a.e. and . It follows from (3.10) and (3.11) that
where , . Since , there exists a positive constant such that
then we conclude as . In fact, it is obvious that , so as . For every , there exists such that
As is reflexive, has a weakly convergent subsequence, still denoted by , such that . We claim . In fact, for any , we have , when , so
By Proposition 2.3, when in , then strongly in . So we conclude by (3.14). In view of (B4), there exist two positive constants and such that
then
that is, condition (A3) in Lemma 2.7 is satisfied. In view of (3.12), let , then
and this shows condition (A2) in Lemma 2.7 is satisfied.
We have proved the functional φ satisfies all the conditions of Lemma 2.7, then φ has an unbounded sequence of critical values by Lemma 2.7; we only need to show as .
In fact, since is a critical point of the functional φ, that is, , by Lemma 2.3 and Remark 2.7, we have
by (3.14). This completes the proof of Theorem 3.2. □
Theorem 3.3Letsatisfy the condition (A) with. Then BVP (1.1) has at least one solution which minimizesφon.
Proof By (3.1), we obtain
where is defined in (2.9), and are constants. Hence, we get
According to the same arguments in [36], φ is weakly lower semicontinuous. By Lemma 2.5, the proof of Theorem 3.3 is completed. □
4 Example
In this section, we give two examples to illustrate our results.
Example 4.1 In BVP (1.1), let
It is easy to verify all the conditions in Theorem 3.2, so BVP (1.1) has infinitely many solutions on and as .
Example 4.2 In BVP (1.1), let . It is easy to verify all the conditions in Theorem 3.3, so BVP (1.1) has at least one solution which minimizes φ on .
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors read and approved the final manuscript.
Acknowledgement
The authors thank the anonymous referees for valuable suggestions and useful hints from others.
References

Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam (2006)

Miller, KS, Ross, B: An Introduction to the Fractional Calculus and Differential Equations, Wiley, New York (1993)

Podlubny, I: Fractional Differential Equations, Academic Press, San Diego (1999)

Samko, SG, Kilbas, AA, Marichev, OI: Fractional Integral and Derivatives: Theory and Applications, Gordon & Breach, Longhorne (1993)

Agarwal, RP, Benchohra, M, Hamani, S: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math.. 109, 973–1033 (2010). Publisher Full Text

Lakshmikantham, V, Vatsala, AS: Basic theory of fractional differential equations. Nonlinear Anal.. 69, 2677–2682 (2008). Publisher Full Text

Vasundhara Devi, J, Lakshmikantham, V: Nonsmooth analysis and fractional differential equations. Nonlinear Anal.. 70, 4151–4157 (2009). Publisher Full Text

Bai, Z, Lü, H: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl.. 311, 495–505 (2005). Publisher Full Text

Agarwal, RP, O’Regan, D, Staněk, S: Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations. J. Math. Anal. Appl.. 371, 57–68 (2010). Publisher Full Text

Goodrich, CS: Existence of a positive solutions to a class of fractional differential equations. Appl. Math. Lett.. 23, 1050–1055 (2010). Publisher Full Text

Kosmatov, N: A boundary value problem of fractional order at resonance. Electron. J. Differ. Equ.. 135, 1–10 (2010)

Jiang, W: The existence of solutions for boundary value problems of fractional differential equations at resonance. Nonlinear Anal. (2010) doi:10.1016/j.na.2010.11.005

Zhang, S: Existence of a solution for the fractional differential equation with nonlinear boundary conditions. Comput. Math. Appl.. 61, 1202–1208 (2011). Publisher Full Text

Liang, S, Zhang, J: Positive solutions for boundary value problems of nonlinear fractional differential equation. Nonlinear Anal.. 71, 5545–5550 (2009). Publisher Full Text

Zhao, Y, Sun, S, Han, Z, Li, Q: The existence of multiple positive solutions for boundary value problems of nonlinear fractional differential equations. Commun. Nonlinear Sci. Numer. Simul.. 16, 2086–2097 (2011). Publisher Full Text

Mawhin, J, Willem, M: Critical Point Theory and Hamiltonian Systems, Springer, New York (1989)

Rabinowitz, PH: Minimax Methods in Critical Point Theory with Applications to Differential Equations, Am. Math. Soc., Providence (1986)

Ambreosetti, A, Rabinowitz, PH: Dual variational methods in critical point theory and applications. J. Funct. Anal.. 14, 349–381 (1973). Publisher Full Text

Chang, K: Variational methods for nondifferential functions and their applications to partial differential equations. J. Math. Anal. Appl.. 80, 102–129 (1981). PubMed Abstract  Publisher Full Text  PubMed Central Full Text

Clarke, FH: Optimization and Nonsmooth Analysis, SIAM, Philadelphia (1990)

Kourogenis, NC, Papageorgiou, NS: Nonsmooth critical point theory and nonlinear elliptic equations at resonance. J. Aust. Math. Soc.. 69, 245–271 (2000). PubMed Abstract  Publisher Full Text  PubMed Central Full Text

Halidias, N: Critical point theory for nonsmooth energy functionals and applications. Acta Math. Univ. Comen.. 2, 147–155 (2002)

Kandilakis, D, Kourogenis, NC, Papageorgiou, NS: Two nontrivial critical points for nonsmooth functionals via local linking and applications. J. Glob. Optim.. 34, 219–244 (2006). Publisher Full Text

Liu, J, Guo, Y: Critical point theory for nonsmooth functions. Nonlinear Anal.. 66, 2731–2741 (2007). Publisher Full Text

Marano, S, Motreanu, D: Infinitely many critical points of nondifferentiable functions and applications to a Neumanntype problem involving the pLaplacian. J. Differ. Equ.. 182, 108–120 (2002). Publisher Full Text

Marano, S, Motreanu, D: On a three critical points theorem for non differentiable functions and applications to nonlinear boundary value problems. Nonlinear Anal.. 48, 37–52 (2002). Publisher Full Text

Dai, G: Nonsmooth version of Fountain theorem and its application to a Dirichlettype differential inclusion problem. Nonlinear Anal.. 72, 1454–1461 (2010). Publisher Full Text

Filippakisa, M, Gasińskib, L, Papageorgiou, NS: Periodic problems with asymmetric nonlinearities and nonsmooth potentials. Nonlinear Anal.. 58, 683–702 (2004). Publisher Full Text

Filippakis, ME: Existence and multiplicity results for nonlinear nonautonomous secondorder systems. Nonlinear Anal.. 68, 1611–1626 (2008). Publisher Full Text

Hu, S, Papageorgiou, NS: Positive solutions and multiple solutions for periodic problems driven by scalar pLaplacian. Math. Nachr.. 279, 1321–1334 (2006). Publisher Full Text

Kristly, A: Infinitely many solutions for a differential inclusion problem in . J. Differ. Equ.. 220, 511–530 (2006). Publisher Full Text

Gasinski, L, Papageorgiou, NS: Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems, Chapman & Hall/CRC Press, Boca Raton (2005)

Ouahab, A: Some results for fractional boundary value problem of differential inclusions. Nonlinear Anal.. 69, 3877–3896 (2008). Publisher Full Text

Chang, YK, Nieto, JJ: Some new existence results for fractional differential inclusions with boundary conditions. Math. Comput. Model.. 49, 605–609 (2009). Publisher Full Text

Wang, J, Zhou, Y: Existence and controllability results for fractional semilinear differential inclusions. Nonlinear Anal., Real World Appl.. 12, 3642–3653 (2012)

Jiao, F, Zhou, Y: Existence of solutions for a class of fractional boundary value problem via critical point theory. Comput. Math. Appl.. 62, 1181–1199 (2011). Publisher Full Text

Bartsch, T: Infinitely many solutions of a symmetric Dirichlet problem. Nonlinear Anal.. 68, 1205–1216 (1993)

Fan, XL, Han, XY: Existence and multiplicity of solutions for Laplacian equations in . Nonlinear Anal.. 59, 173–188 (2004)