Abstract
We give a global description of the branches of positive solutions of firstorder impulsive boundary value problem:
which is not necessarily linearizable. Where is a parameter, are given impulsive points. Our approach is based on the KreinRutman theorem, topological degree, and global bifurcation techniques.
MSC: 34B10, 34B15, 34K15, 34K10, 34C25, 92D25.
Keywords:
KreinRutman theorem; topological degree; bifurcation from interval; impulsive boundary value problem; existence and multiplicity1 Introduction
Some evolution processes are distinguished by the circumstance that at certain instants their evolution is subjected to a rapid change, that is, a jump in their states. Mathematically, this leads to an impulsive dynamical system. Differential equations involving impulsive effects occur in many applications: physics, population dynamics, ecology, biological systems, biotechnology, industrial robotic, pharmacokinetics, optimal control, etc. Therefore, the study of this class of impulsive differential equations has gained prominence and it is a rapidly growing field. See [19] and the references therein.
Let us consider the equation
subjected to the impulsive boundary condition
where is a real parameter, , are given impulsive points. We make the following assumptions:
(H1) is a 1periodic function and ;
(H2) , , for , there exist positive constants such that
(H3) is 1periodic function with respect to the first variable, and , exist, . Moreover, there exist functions with in any subinterval of such that
where with as uniformly for (), and
where with as uniformly for ();
(H5) there exists function and in any subinterval of such that
Some special cases of (1.1), (1.2) have been investigated. For example, Nieto [3] considered the (1.1), (1.2) with , . By using Schaeffer’s theorem, some sufficient conditions for existence of solutions of the IBVP (1.1), (1.2) with , were obtained.
Li, Nieto, and Shen [4] studied the existence of at least one positive periodic solutions of (1.1), (1.2) with , (m is a constant). By using Schaeffer’s fixedpoint theorem, they got the solvability under f satisfied at most linear growth and is bounded or f is bounded and satisfied at most linear growth.
Liu [7] studied the existence and multiplicity of (1.1), (1.2) with , by using the fixed point theorem in cones, and he proved the following:
Theorem A ([7], Theorem 3.1.1])
Let (H1) hold. Assume that, , , and
and
Then the problem (1.1), (1.2) withhas at least one positive solution wherewill be defined in (2.2) and
Theorem B ([7], Theorem 3.1.2])
Let (H1) hold. Assume that, , and
and
Then the problem (1.1), (1.2) withhas at least one positive solution whereW, wdefined as (1.5) and
It is worth remarking that the [3,4,7] only get the existence of solutions, and there is not any information of global structure of positive periodic solutions.
By using global bifurcation techniques, we obtain a complete description of the global structure of positive solutions for (1.1), (1.2) under weaker conditions. More precisely, our main result is the following theorem.
Theorem 1.1Let (H1), (H2), and (H3) hold. Suppose, , , . Then
(i) is a bifurcation interval of positive solutions from infinity for (1.1), (1.2), and there exists no bifurcation interval of positive solutions from infinity which is disjoint with. More precisely, there exists a componentof positive solutions of (1.1), (1.2) which meets, where, will be defined in Section 2;
(ii) is a bifurcation interval of positive solutions from the trivial solutions for (1.1), (1.2), and there exists no bifurcation interval of positive solutions from the trivial solutions which is disjoint with. More precisely, there exists a componentof positive solutions of (1.1), (1.2) which meets, where, will be defined in Section 4;
(iii) If (H4) and (H5) also hold, then there is a numbersuch that problem (1.1), (1.2) admits no positive solution with. In this case, .
Remark 1.1 There is no paper except [9] studying impulsive differential equations using bifurcation ideas. However, in [9], they only dealt with the case that , i.e., do exist. Where
From (H3), it is easy to see that the , may be not exist, the method used in [9] is not helpful any more in this case.
Remark 1.2 From (iii) of Theorem 1.1, we know that , are involved in . Moreover, is a unique bifurcation interval of positive solutions from infinity for (1.1), (1.2), and is a unique bifurcation interval of positive solutions from the trivial solutions for (1.1), (1.2). Therefore, must be intersected with .
Remark 1.3 Obviously, (H3) is more general than (1.5), (1.8). Moreover, if we let , , under conditions (1.3), (1.4), we get , , respectively. Hence, cross the hyperplane . Therefore, Theorem 3.1.1 of [7] is the corollary of Theorems 1.1 even in the special case.
Remark 1.4 Similar, if we let , , only under condition (1.6), we can obtain . From Proposition 3.1, we will know that is unbounded in λ direction, so, cross the hyperplane . Therefore, Theorem 3.1.2 of [7] is the corollary of Theorems 1.1 even in the special case and weaker condition.
Remark 1.5 There are many papers which get the positive solutions using bifurcation from the interval. For example, see [10,11]. However, in those papers, the linear operator corresponding problem is selfadjoint. It is easy to see that the linear operator corresponding (1.1), (1.2) is not selfadjoint. So, the method used in [9,10] is not helpful in this case.
Remark 1.6 Condition (H3) means that f is not necessarily linearizable near 0 and infinity. So, we will apply the following global bifurcation theorems for mappings which are not necessarily smooth to get a global description of the branches of positive solutions of (1.1), (1.2), and then, we obtain the existence and multiplicity of positive solutions of (1.1), (1.2).
Theorem C (K. Schmitt, R. C. Thompson [12])
LetVbe a real reflexive Banach space. Letbe completely continuous such that, . Let () be such thatis an isolated solution of the equation
forand, where, are not bifurcation points of (1.9). Furthermore, assume that
whereis an isolating neighborhood of the trivial solution. Let
Then there exists a connected componentofℓcontainingin, and either
Theorem D (K. Schmitt [13])
LetVbe a real reflexive Banach space. Letbe completely continuous, and let () be such that the solution of (1.9) are, a priori, bounded inVforand, i.e., there exists ansuch that
for alluwith. Furthermore, assume that
forlarge. Then there exists a closed connected setof solutions of (1.9) that is unbounded in, and either
(i) is unbounded inλdirection, or
(ii) there exist an intervalsuch that, andbifurcates from infinity in.
The rest of the paper is organized as follows: In Section 2, we state some notations and preliminary results. Sections 3 and 4 are devoted to study the bifurcation from infinity and from the trivial solution for a nonlinear problem which are not necessarily linearizable, respectively. Finally, in Section 5, we consider the intertwining of the branches bifurcating from infinity and from the trivial solution.
2 Preliminaries
Let
Then is a Banach space with the norm .
By a positive solution of the problem (1.1), (1.2), we mean a pair , where and u is a solution of (1.1), (1.2) with . Let be the closure of the set of positive solutions of (1.1), (1.2), where .
Lemma 2.1 ([14], Theorem 6.26])
The spectrumof compact linear operatorThas following properties:
(i) is a countable set with no accumulation point which is different from zero;
(ii) each nonzerois an eigenvalue ofTwith finite multiplicity, andis an eigenvalue ofwith the same multiplicity, wheredenote the conjugate ofλ, denote the conjugate operator ofT.
Let , with inner product and norm .
Let and in any subinterval of . Further define the linear operator ,
where as defined in (H2), is the Green’s function of
and
where , it is easy to see that (H1) implies that .
By virtue of KreinRutman theorems (see [15]), we have the following lemma.
Lemma 2.2Suppose that (H1) holds, then for the operatordefined by (2.1), has a unique characteristic value, which is positive, real, simple, and the corresponding eigenfunctionis of one sign, i.e., we have.
Proof It is a direct consequence of the KreinRutman theorem [15], Theorem 19.3]. □
Remark 2.1 Since is real number, so from Lemma 2.1, is also the characteristic value of , let denote the nonnegative eigenfunction of corresponding to , where denote the conjugate operator of . Therefore, we have
We extend the function f to function , defined on by
is equivalent to the operator equation .
Remark 2.2 For , if u is a nontrivial solution of (2.3), from the positivity of and , we have that on , so u is a nontrivial solution of (1.1), (1.2). Therefore, the closure of the set of nontrivial solutions of (2.3) in is exactly Σ.
The problem (2.3) is now equivalent to the operator equation
In the following, we shall apply the LeraySchauder degree theory, mainly to the mapping ,
3 Bifurcation from infinity
In this section, we are devoted to study the bifurcation from infinity.
Lemma 3.1Letbe a compact interval with. Then there exists a numbersuch that
Proof Suppose on the contrary that there exists with (), such that . We may assume . By Remark 2.2, in . Set . Then
From (H2), (H3), we know that is bounded in , so is a relatively compact set in since is bounded and continuous and . Suppose in . Then and in .
Now, from condition (H2), we know that there exist , such that
From (H3), we have that
So,
and
accordingly, we have
and
Let and denote the nonnegative eigenfunctions of , corresponding to , and , respectively. Then we have from the (3.1) that
we obtain that
and consequently
Similarly, we deduce from (3.2) that
Proof Lemma 3.1, applied to the interval , guarantees the existence of such that for ,
which implies the assertion. □
On the other hand, we have
Lemma 3.2Suppose. Then there existswith the property thatwith, ,
whereis the nonnegative eigenfunction ofcorresponding to.
Proof Let us assume that for some sequence in with and numbers , such that . Then
and we conclude from Remark 2.2 that in . So we have
By (H3), there exists , such that
From , then exists , such that
and consequently
Let , applying (3.4), it follows that
Thus,
this contradicts (3.3). □
Proof By Lemma 3.2, there exists such that
Then
for all . The assertion follows. □
We are now ready to prove
Proposition 3.1is a bifurcation interval of positive solutions from infinity for the problem (2.4). There exists an unbounded componentof positive solutions of (2.4) which meets, and is unbounded inλdirection. Moreover, there exists no bifurcation interval of positive solutions from infinity which is disjointed with.
Proof For fixed with , let us take that , and . It is easy to check that for , all of the conditions of Theorem D are satisfied. So, there exists a closed connected set of solutions of (2.4) that is unbounded in , and either
(i) is unbounded in λ direction, or else
(ii) such that and bifurcates from infinity in .
By Lemma 3.1, the case (ii) cannot occur. Thus, bifurcates from infinity in and is unbounded in λ direction. Furthermore, we have from Lemma 3.1 that for any closed interval , the set is bounded in . So, must be bifurcated from infinity in and is unbounded in λ direction. □
Assertion (i) of Theorem 1.1 follows directly.
4 Bifurcation from the trivial solutions
In this section, we shall study the bifurcation from the trivial solution for a nonlinear problem which is not necessarily linearizable near 0 and infinity.
As in Section 2, let and in any subinterval of . Further define the linear operator ,
where is defined in (H2), is defined in (2.2).
Similar as Lemma 2.2, we have the following lemma.
Lemma 4.1Suppose that (H1) holds, then the operatorhas a unique characteristic value, which is positive, real, simple, and the corresponding eigenfunctionis of one sign, i.e., we have.
Remark 4.1 Since is real number, so from Lemma 2.1, is also the characteristic value of , where denote the conjugate operator of , let denote the nonnegative eigenfunction of corresponding to . Therefore, we have
Lemma 4.2Letbe a compact interval with. Then there exists a numbersuch that
Proof Suppose on the contrary that there exists with (), such that . We may assume . By Remark 2.2, in . Set . Then
From (H2), (H3), we know that is bounded in , so we infer that is a relatively compact set in , hence (for a subsequence) with in , .
Now, from condition (H2), we know that there exist , such that
From (H3), we have that
So,
and
accordingly, we have
and
Let and denote the nonnegative eigenfunctions of , corresponding to , and , respectively. Then we have from the (4.2) that
we obtain that
and consequently
Similarly, we deduce from (4.3) that
On the other hand, we have
Lemma 4.3Suppose. Then there existswith the property thatwith, ,
whereis the nonnegative eigenfunction of thecorresponding to.
Proof We assume again on the contrary that there exists and a sequence with and in , such that for all .
Then
and we conclude from Remark 2.2 that in . So, we have
By (H3), there exists , such that
From , then exists , such that
and consequently
Let , applying (4.5), it follows that
Thus,
this contradicts with (4.4). □
Proof By Lemma 4.3, there exists such that
Then
for all . Then the assertion follows. □
Now, using Theorem C and the similar method to prove Proposition 3.1 with obvious changes, we may prove the following proposition.
Proposition 4.1is a bifurcation interval of positive solutions from the trivial solution for the problem (2.4). There exists an unbounded componentof positive solutions of (2.4) which meets. Moreover, there exists no bifurcation interval of positive solutions from the trivial solution which is disjointed with.
This is exactly the assertion (ii) of Theorem 1.1.
5 Global behavior of the component of positive solutions
In this section, we consider the intertwining of the branches bifurcating from infinity and from the trivial solution.
Let , for . From (H2), we have , .
where is defined in (H5), is defined in (2.2).
Similar as Lemma 2.2, we have the following lemma.
Lemma 5.1The operatorhas a unique characteristic value, which is positive, real, simple, and the corresponding eigenfunctionis of one sign, i.e., we have.
Remark 5.1 Since is real number, so from Lemma 2.1, is also the characteristic value of , where denote the conjugate operator of , let denote the nonnegative eigenfunction of corresponding to . Therefore, we have
Lemma 5.2Let (H1)(H5) hold. Then there exists a numbersuch that there is no positive solutionofwith.
Proof Let be a positive solution of . Then
From (H5) and the definition of , we have
From (5.2), we have
Thus,
□
The assertion that in Theorem 1.1(iii) now easily follows. For, in the case, and are contained in . Moreover, there exists no bifurcation interval of positive solution from infinity which is disjointed with , there exists no bifurcation interval of positive solution from the trivial solution which is disjointed with . In Theorem 1.1(iii), the unbounded component has to meet .
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
RM completed the main study and carried out the results of this article. BY drafted the manuscript. ZW checked the proofs and verified the calculation. All the authors read and approved the final manuscript.
Acknowledgements
The authors are very grateful to the anonymous referees for their valuable suggestions. This work was supported by the NSFC (No. 11061030), NSFC (No. 11126296), and the Fundamental Research Funds for the Gansu Universities.
References

Bainov, DD, Simeonov, PS: Impulsive Differential Equations: Periodic Solutions and Applications, Longman, Harlow (1993)

He, ZM, Yu, JS: Periodic boundary value problem for firstorder impulsive ordinary differential equations. J. Math. Anal. Appl.. 272, 67–78 (2002). Publisher Full Text

Nieto, JJ: Periodic boundary value problems for firstorder impulsive ordinary differential equations. Nonlinear Anal. TMA. 51, 1223–1232 (2002). Publisher Full Text

Li, JL, Nieto, JJ, Shen, JH: Impulsive periodic boundary value problems of firstorder differential equations. J. Math. Anal. Appl.. 325, 226–236 (2007). Publisher Full Text

Zhao, AM, Bai, ZG: Existence of solutions to firstorder impulsive periodic boundary value problems. Nonlinear Anal. TMA. 71, 1970–1977 (2009). Publisher Full Text

Zhang, XY, Li, XY, Jiang, DQ, Wang, K: Multiplicity positive solutions to periodic problems for firstorder impulsive differential equations. Comput. Math. Appl.. 52, 953–966 (2006). Publisher Full Text

Liu, YJ: Positive solutions of periodic boundary value problems for nonlinear firstorder impulsive differential equations. Nonlinear Anal. TMA. 70, 2106–2122 (2009). Publisher Full Text

Chu, JF, Nieto, J: Impulsive periodic solutions of firstorder singular differential equations. Bull. Lond. Math. Soc.. 40, 143–150 (2008). Publisher Full Text

Liu, Y, O’Regan, D: Multiplicity results using bifurcation techniques for a class of boundary value problems of impulsive differential equations. Commun. Nonlinear Sci. Numer. Simul.. 16, 1769–1775 (2011). Publisher Full Text

Ma, RY, Xu, J: Bifurcation from interval and positive solutions of a nonlinear fourthorder boundary value problem. Nonlinear Anal. TMA. 72, 113–122 (2010). Publisher Full Text

Xu, J, Ma, RY: Bifurcation from interval and positive solutions for second order periodic boundary value problems. Appl. Math. Comput.. 216, 2463–2471 (2010). Publisher Full Text

Schmitt, K, Thompson, RC: Nonlinear Analysis and Differential Equations: An Introduction, University of Utah Lecture Note, University of Utah, Salt Lake City (2004)

Schmitt, K: Positive Solutions of Semilinear Elliptic Boundary Value Problem, pp. 447–500. Kluwer Academic, Dordrecht (1995)

Kato, T: Perturbation Theory for Linear Operators, Springer, New York (1980)

Deimling, K: Nonlinear Functional Analysis, Springer, Berlin (1985)