SpringerOpen Newsletter

Receive periodic news and updates relating to SpringerOpen.

Open Access Research

Bifurcation of positive periodic solutions of first-order impulsive differential equations

Ruyun Ma*, Bianxia Yang and Zhenyan Wang

Author affiliations

Department of Mathematics, Northwest Normal University, Lanzhou, 730070, P.R. China

For all author emails, please log on.

Citation and License

Boundary Value Problems 2012, 2012:83  doi:10.1186/1687-2770-2012-83

Published: 1 August 2012

Abstract

We give a global description of the branches of positive solutions of first-order impulsive boundary value problem:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/83/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/83/mathml/M1">View MathML</a>

which is not necessarily linearizable. Where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/83/mathml/M2','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/83/mathml/M2">View MathML</a> is a parameter, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2012/1/83/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2012/1/83/mathml/M3">View MathML</a> are given impulsive points. Our approach is based on the Krein-Rutman theorem, topological degree, and global bifurcation techniques.

MSC: 34B10, 34B15, 34K15, 34K10, 34C25, 92D25.

Keywords:
Krein-Rutman theorem; topological degree; bifurcation from interval; impulsive boundary value problem; existence and multiplicity