Abstract
In this work, we study a telegraph integrodifferential equation with a weighted integral condition. By means of the Galerkin method, we establish the existence and uniqueness of a generalized solution.
MSC: 35L05, 35L20, 35L99.
Keywords:
integrodifferential equation; integral conditions; approximate solution; Galerkin method1 Introduction
In this work, we consider the following hyperbolic integrodifferential equation with integral conditions:
for all , subject to the initial conditions
and the weighted integral conditions
where f, φ, ψ, h, a, c, α and K are given functions.
Various problems arising in heat conduction [15], chemical engineering [6], thermoelasticity [7], and plasma physics [8] can be modeled by the nonlocal problems. Boundary value problems with integral conditions constitute a very interesting and important class of problems. These nonlocal conditions arise mostly when the data on the boundary cannot be measured directly. Recall that the presence of an integral term in boundary conditions can complicate the application of classical methods of functional analysis in the theoretical study of nonlocal problems, therefore, several methods have been proposed for overcoming the difficulties arising from nonlocal conditions; see Beilin [1], Cannon et al.[2,8], and Dehghan et al.[3,4,9].
Numerical solutions are introduced to obtain approximations for the solution of partial differential equations when the analytical solutions are difficult or impossible to obtain due to complicated geometry or boundary conditions. In the area of numerical analysis, the Galerkin method is a class of methods for converting a continuous operator problem to a discrete problem. In principle, it is the equivalent of applying the method of a variation of parameters to a function space, by converting the equation to a weak formulation, hence in this approach we choose a system of linearly independent functions such that they satisfy the given homogeneous boundary condition, and they are dense in a function space containing the exact solution of the above boundary value problem.
The advantage of this approach is not only to establish the existence and uniqueness of the solution, but it is also a very effective method in the study of the approximate solution and its convergence.
In this paper, we study the hyperbolic integrodifferential equation (1.1) with a Volterra operator of the form in the second member, which appears in the modelling of the quasistatic flexure of a thermoelastic rod and has been studied in [9,10] under different boundary conditions, by means of the Rothe method. Let us mention that different methods are used to solve similar integrodifferential equations, for example, in [11,12] the authors have established the existence and uniqueness of the solution using Rothe’s method of an integrodifferential equation. In [10,13], the authors have used Rothe’s method and the techniques of [7] to prove the existence, uniqueness and continuous dependence of a strong solution to a quasilinear integrodifferential equation. In [6], the local existence and uniqueness of a classical solution of an abstract secondorder integrodifferential equation in a Banach space have been investigated by using the theory of an analytic semigroups and contraction mapping theorem. In [14,15] the authors investigated a telegraph equation with nonlocal integral conditions by means of the Galerkin method.
This paper is organized as follows: In the next section, we define the generalized solution and the functional spaces. In Section 3, we prove that the generalized solution if it exists is unique. The existence of the generalized solution by using the Galerkin method is established in the fourth section, and for this, we construct an approximation solution of the problem (1.1)(1.4). We prove that we can extract a subsequence, which converges to the desired generalized solution. An application is included to illustrate that corresponding assumptions are satisfied.
2 Notation and definition
Let be the usual space of Lebesgue square integrable real functions on whose inner product and norm will be denoted respectively by and . Denote by the Sobolev space consisting of all functions having weak derivatives in , with the norm
Let us define the generalized solution of the problem (1.1)(1.4). Suppose that u is a solution of this problem, multiply both sides of equation (1.1) by , where , integrate by parts the resultant equation over the domain Q, use the conditions (1.2), (1.3), (1.4) and the fact that , we obtain
where
and
Definition 1 By a generalized solution of problem (1.1)(1.4), we mean a function satisfying for all the identity (2.1).
3 Uniqueness of generalized solution
For solving the problem, we make the following hypotheses:
(H1) The functions a and c are nonnegative and satisfy on Q
The function α is continuous and denote .
(H2) The function , is nonnegative and satisfy for all
(H3) The operator is linear with respect to u and continuous according to the both variables t and u and satisfies for all and
Now we shall show that the generalized solution of problem (1.1)(1.4) if it exists is unique.
Theorem 2Assume that, and hypotheses (H1)(H3) hold, then the generalized solution of problem (1.1)(1.4) if it exists is unique.
Proof Suppose that there exists two different generalized solutions and of the problem (1.1)(1.4), then is a generalized solution of the problem (1.1)(1.4) with and second member . We shall prove that in Q. Let and denote for .
. Consider the function v such that
Substituting v into identity (2.1), it follows
Integrating by parts it yields
Applying Cauchy inequality, ϵinequality and the hypotheses on the operator K to the last term in the righthand side of (3.2), we get
Applying similar inequalities with , for the second, the third and the fourth terms in the righthand side of (3.1) then using conditions (H1)(H3), we obtain
denote
then (3.3) becomes
Gronwall inequality implies
hence , for all and , then in Q. Thus, the uniqueness is proved. □
4 Existence of generalized solution
In order to prove the existence of the generalized solution we apply Galerkin method.
Theorem 3Assume that the assumptions of Theorem 2 hold, then the problem (1.1)(1.4) has a unique solution.
Proof Let be a fundamental system in , such that
We have to find for each , the approximate solution of the problem (1.1)(1.4) which has the following form:
Denote
the approximate of the functions and . Substituting the approximate solution in equation (1.1), multiplying both sides by , then integrating according to x on , we get
Substituting (4.1) in (4.3), we get
Integrating by parts in the lefthand side of (4.4) yields
Denote
then (4.5) becomes
Consequently, we obtain a Cauchy system of secondorder integrodifferential equations with smooth coefficients, so it has one and only one solution that for every n there exists a unique sequence that satisfies (4.3). □
Lemma 4The sequenceis bounded.
Proof Multiplying (4.3) by then summing with respect to i from 1 to n it yields
Integrating (4.6) over t from 0 to τ we obtain
Thanks to Cauchy inequality, ϵinequality, the hypotheses on the operator K to the last term in the righthand side of (4.7), we get
Using similar inequalities for the second, the third and the fourth terms in the righthand side of (4.7), then regrouping the same terms yields
then (4.8) becomes
Now, we apply Gronwall lemma to get
Integrating (4.10) according to τ on yields
Thus inequality (4.11) implies the boundedness of the sequence . □
Remark 5 We have proved that the sequence is bounded, so we can extract a subsequence, which we denote by that is weakly convergent. Now we prove that its limit is the desired solution of the problem (1.1)(1.4).
Lemma 6The limit of the subsequenceis the solution of the problem (1.1)(1.4).
Proof We shall prove that the limit of the subsequence satisfies the identity (2.1). Let , such that , let us prove that identity (2.1) holds for any functions . Since the set is such that is dense in , it suffices to prove (2.1) for . Multiplying (4.3) by , summing according to k from 1 to n, then integrating over t from 0 to T, we obtain
Denote by u the weak limit of the subsequence when k tends to infinity. Hence,
Finally, by passing to the limit in (4.12), we get that the limit u satisfies (2.1). □
Example 7 Consider the following boundary value problem for hyperbolic integrodifferential equation for , :
subject to the initial conditions
and the weighted integral condition
where . It is easy to prove that assumptions (H1)(H3) are satisfied, then from Theorems 2 and 3, and we deduce that the problem (4.13)(4.16) has a unique generalized solution in the sense of Definition 1. Moreover, the function is the solution of this problem.
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors typed, read and approved the final manuscript.
Acknowledgements
The authors would like to thank the referees for their valuable suggestions.
References

Beilin, SA: Existence of solutions for one dimensional wave equations with nonlocal conditions. Electron. J. Differ. Equ.. 76, 1–8 (2001)

Cannon, JR: The solution of the heat equation subject to the specification of energy. Q. Appl. Math.. 21, 155–160 (1963)

Dehghan, M: On the solution of an initialboundary value problem that combines Neumann and integral condition for the wave equation. Numer. Methods Partial Differ. Equ.. 21, 24–40 (2005). Publisher Full Text

Dehghan, M: A finite difference method for a nonlocal boundary value problem for two dimensional heat equation. Appl. Math. Comput.. 112, 133–142 (2000). Publisher Full Text

Ionkin, NI: Solutions of boundary value problem in heat conduction theory with nonlocal boundary conditions. Differ. Uravn. (Minsk). 13, 294–304 (1977)

Dubey, RS: Existence of the unique solution to abstract second order semilinear integrodifferential equations. Nonlinear Dyn. Syst. Theory. 10(4), 375–386 (2010)

Crandall, MG, Souganidis, P: Convergence of difference approximations of quasilinear evolution equations. Nonlinear Anal.. 10, 425–445 (1986). Publisher Full Text

Cannon, JR, Lin, Y, Wang, S: An implicit finite difference scheme for the diffusion equation subject to mass specification. Int. J. Eng. Sci.. 28, 573–578 (1990). Publisher Full Text

Dehghan, M: Second order schemes for a boundary value problem with Neumann boundary conditions. Appl. Math. Comput.. 138, 173–184 (2002). Publisher Full Text

Bahuguna, D: Quasilinear integrodifferential equations in Banach spaces. Nonlinear Anal.. 24, 175–183 (1995). Publisher Full Text

Kumar, K, Kumar, R, Shukla, RK: Nonlocal parabolic integrodifferential equations with delay. Int. J. Appl. Math. Res.. 1(4), 549–564 (2012)

GuezaneLakoud, A, Chaoui, A: Rothe method applied to semilinear hyperbolic integrodifferential equation with integral conditions. Int. J. Open Probl. Comput. Sci. Math.. 4, 1–14 (2011)

Dabas, J, Bahuguna, D: An integrodifferential equation with an integral boundary condition. Math. Comput. Model.. 50, 123–131 (2009). Publisher Full Text

GuezaneLakoud, A, Dabas, J, Bahuguna, D: Existence and uniqueness of generalized solutions to a telegraph equation with an integral boundary condition via Galerkin method. Int. J. Math. Math. Sc. 2011, Article ID 451492 (2011)

GuezaneLakoud, A, Bendjazia, N: Galerkin method for solving a telegraph equation with a weighted integral condition. Int. J. Open Probl. Complex Anal.. 5, 41–53 (2012)