SpringerOpen Newsletter

Receive periodic news and updates relating to SpringerOpen.

This article is part of the series Proceedings of the International Congress in Honour of Professor Hari M. Srivastava.

Open Access Research

Linear vibrations of continuum with fractional derivatives

Duygu Dönmez Demir1*, Necdet Bildik1 and Berra Gültekin Sinir2

Author Affiliations

1 Department of Mathematics, Faculty of Art & Sciences, Celal Bayar University, Manisa, 45047, Turkey

2 Department of Civil Engineering, Faculty of Engineering, Celal Bayar University, Manisa, 45140, Turkey

For all author emails, please log on.

Boundary Value Problems 2013, 2013:104  doi:10.1186/1687-2770-2013-104

The electronic version of this article is the complete one and can be found online at: http://www.boundaryvalueproblems.com/content/2013/1/104


Received:18 December 2012
Accepted:12 April 2013
Published:25 April 2013

© 2013 Dönmez Demir et al.; licensee Springer

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, linear vibrations of axially moving systems which are modelled by a fractional derivative are considered. The approximate analytical solution is obtained by applying the method of multiple scales. Including stability analysis, the effects of variation in different parameters belonging to the application problems on the system are calculated numerically and depicted by graphs. It is determined that the external excitation force acting on the system has an effect on the stiffness of the system. Moreover, the general algorithm developed can be applied to many problems for linear vibrations of continuum.

Keywords:
linear vibrations; dynamic analysis of continuum; fractional derivative; perturbation method

1 Introduction

Fractional derivatives are useful for describing the occurrence of vibrations in engineering practice. The studies involving fractional calculus and its applications to mechanical problems appear widely in different studies [1]. The advances in fractional calculus focus on modern examples in differential and integral equations, physics, signal processing, fluid mechanics, viscoelasticity, mathematical biology and electrochemistry [2].

The general solution procedure including all the problems instead of separately solving each problem is quite advantageous. Many different linear or nonlinear models addressing vibrations of continuum appear in the literature. Some of these works are as follows: Pakdemirli [3] developed a general operator technique to analyse the vibrations of a continuous system with an arbitrary number of coupled differential equations. Özhan and Pakdemirli [4-6] suggested the general solution procedure to investigate a more general class of continuous systems such as gyroscopic and viscoelastic systems. Ghayesh et al.[7] considered a general solution procedure for the vibrations of systems with cubic nonlinearities subjected to nonlinear and time-dependent boundary conditions. Hence, a general solution is adapted to solve the dynamic problems constituting continuum.

In recent years, there has been a growing interest in the area of fractional variational calculus and its applications [8,9]. Fractional calculus, which is used successfully in various fields such as mathematics, science and engineering, is one of the generalisations of classical calculus. The merits of using a fractional differential operator lie in the fact that few parameters are needed to accurately describe the constitutive law of damping materials [10]. Bagley and Calico [11] modelled the mechanical properties of damping materials by fractional order time derivatives. The mechanical scientific community recognised the significance of fractional calculus for modelling viscoelastic material behaviour thanks to Bagley et al.[12]. Also, they studied longitudinal vibrations of rods and flexural vibrations of beams based on viscoelastic fractional derivative models [13]. For solving dynamic problems with a fractional derivative, the analysis of free damped vibrations of various mechanical systems, whose behaviour is described by linear viscoelastic models with fractional derivatives, were studied by Rossikhin and Shitikova [14]. Mainardi [15] considered the problems in continuum mechanics related to mathematical modelling of viscoelastic bodies. Cooke et al.[16] investigated the response of a viscoelastic beam with a fractional derivative. Skaar et al.[17] used a fractional standard linear solid model. French and Rogers [18] presented a small group of structural dynamics problems for which fractional calculus was adopted.

The general solution allows one to investigate the effects on a dynamic analysis of continuum whose damping term is modelled by a fractional derivative. An engineering problem which is a special application of the general model developed in this study was formerly considered in [19]. In our previous study [20], the analysis of primary and parametric resonance for the external excitation term having ε-order was performed. As the forced term is obtained in one-order, sum or difference type of resonance also appears in the present model. The method of multiple scales is used in the analysis. Thus, the amplitude and phase modulation equations are produced in terms of operators. In addition, the variations of the curves with respect to the dimensionless parameters are presented. Finally, the effects of fractional damping on the linear vibrations of continuum are investigated in detail.

2 Equation of motion

Let us consider a non-homogeneous and dimensionless model as follows:

(1)

(2)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M3">View MathML</a> represents the displacement, x and t are the spatial and time variables. ε is a small dimensionless parameter, F is the external excitation force, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M4','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M4">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M5','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M5">View MathML</a> are the internal and the external excitation frequencies, respectively. <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M6','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M6">View MathML</a> defines the fractional derivative of order α. The dot denotes differentiation with respect to time t; <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M7','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M7">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M8','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M8">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M9','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M9">View MathML</a> are self-adjoint operators involving only the spatial variable x, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M10','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M10">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M11','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M11">View MathML</a> are linear operators of boundary conditions. Here, the associated boundary conditions are linear, homogeneous and free from the time.

3 Method of multiple scales

The method is directly applied to the partial differential equation (1). Thus, we can write

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M12','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M12">View MathML</a>

(3)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M13">View MathML</a> is the usual fast-time scales, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M14','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M14">View MathML</a> is the slow-time scales. Time derivatives are expressed in terms of fast and slow time scales as follows [21]:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M15','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M15">View MathML</a>

(4)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M16','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M16">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M17','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M17">View MathML</a>. The perturbative expansion of the Riemann-Liouville fractional derivative is given by

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M18','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M18">View MathML</a>

(5)

In order to calculate the fractional derivative of the exponential function, we may use Riemann-Liouville derivatives [22]

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M19','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M19">View MathML</a>

(6)

If we take <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M20','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M20">View MathML</a>, then

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M21','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M21">View MathML</a>

(7)

is obtained such that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M22','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M22">View MathML</a> are the Riemann-Liouville fractional derivatives. Substituting Eqs. (3)-(5) into Eqs. (1) and (2), one obtains

(8)

(9)

(10)

(11)

The solution at <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M27','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M27">View MathML</a>-order is

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M28','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M28">View MathML</a>

(12)

where cc denotes complex conjugates. On the other hand, the functions <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M29','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M29">View MathML</a> and Y satisfy the following equations:

(13)

(14)

(15)

(16)

At ε-order, the solution is

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M34','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M34">View MathML</a>

(17)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M35','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M35">View MathML</a> is related to the non-secular terms and other parts of the solution are associated with the secular terms. For the approximate solution at ε-order, one substitutes Eq. (12) into Eq. (10). Thus, the resulting equation is obtained as

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M36','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M36">View MathML</a>

(18)

Then, five cases occur as follows.

4 Case studies

In this section, we assume that one dominant mode of vibrations exists. Depending on the numerical values of natural frequency, five different cases occur.

4.1 <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M37','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M37">View MathML</a> away from <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M38">View MathML</a> and 0, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M5','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M5">View MathML</a> away from <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M40','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M40">View MathML</a>

This case corresponds to absence of any resonances. Then Eq. (18) turns into

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M41','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M41">View MathML</a>

(19)

where NST denotes non-secular terms. If Eq. (17) is substituted into Eq. (19), then <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M42','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M42">View MathML</a> satisfies

(20)

(21)

Thus, the solvability condition [23] requires

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M45','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M45">View MathML</a>

(22)

where

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M46','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M46">View MathML</a>

(23)

Finally, the amplitude is obtained as

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M47','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M47">View MathML</a>

(24)

and in the same sense, the displacement is calculated as

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M48','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M48">View MathML</a>

(25)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M49','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M49">View MathML</a> is constant.

4.2 <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M37','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M37">View MathML</a> close to <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M38">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M5','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M5">View MathML</a> away from <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M40','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M40">View MathML</a>

Principal parametric resonance occurs in this case. Thus, the internal excitation frequency is considered as

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M54','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M54">View MathML</a>

(26)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M55','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M55">View MathML</a> is a detuning parameter. Then Eq. (18) becomes

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M56','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M56">View MathML</a>

(27)

where

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M57','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M57">View MathML</a>

(28)

For the stability analysis, one introduces the transformation

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M58','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M58">View MathML</a>

(29)

where

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M59','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M59">View MathML</a>

(30)

Substituting (29) and (30) into Eq. (27), and separating real and imaginary parts, the representation of the system of equations with the coefficient matrix is given as

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M60','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M60">View MathML</a>

(31)

For a non-trivial solution (<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M61','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M61">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M62','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M62">View MathML</a>), the determinant of the coefficient matrix must be

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M63','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M63">View MathML</a>

(32)

For the steady state condition, λ must be zero. Therefore, the stability boundaries are

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M64','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M64">View MathML</a>

(33)

Inserting <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M55','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M55">View MathML</a> into Eq. (26), the internal excitation frequency is obtained as

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M66','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M66">View MathML</a>

(34)

4.3 <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M37','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M37">View MathML</a> close to 0 and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M68','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M68">View MathML</a> away from <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M40','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M40">View MathML</a>

The nearness of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M37','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M37">View MathML</a> to zero is expressed as

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M71','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M71">View MathML</a>

(35)

Arranging Eq. (18), one obtains

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M72','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M72">View MathML</a>

(36)

Solving Eq. (36),

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M73','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M73">View MathML</a>

(37)

and

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M74','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M74">View MathML</a>

(38)

is calculated.

4.4 <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M37','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M37">View MathML</a> away from <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M38">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M5','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M5">View MathML</a> close to <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M40','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M40">View MathML</a>

In this case, we consider the primary resonance <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M79','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M79">View MathML</a> when the frequency of the loading is approximately equal to the natural frequency. Thus, Eq. (18) turns into

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M80','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M80">View MathML</a>

(39)

where

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M81','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M81">View MathML</a>

(40)

Substituting the polar form

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M82','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M82">View MathML</a>

(41)

into Eq. (39) and separating the equation into real and imaginary parts, we obtain

(42)

(43)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M85','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M85">View MathML</a>. For steady-state solutions, we consider

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M86','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M86">View MathML</a>

(44)

By the same mathematical manipulation, the stability boundaries are found as

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M87','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M87">View MathML</a>

(45)

4.5 Sum and difference type of resonance

Let us consider sum or difference of internal and external excitation frequency as <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M88','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M88">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M89','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M89">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M90','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M90">View MathML</a>. Then <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M91','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M91">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M92','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M92">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M93','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M93">View MathML</a> are close to <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M40','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M40">View MathML</a>. If Eq. (18) is arranged, we get

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M95','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M95">View MathML</a>

(46)

where

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M96','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M96">View MathML</a>

(47)

Substituting Eq. (41) into Eq. (46) and separating into real and imaginary parts, we get

(48)

(49)

For steady-state solutions, the equations must be rearranged according to the condition (44). Then the stability boundaries are obtained as

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M99','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M99">View MathML</a>

(50)

5 Applications

5.1 The longitudinal vibrations of a tensioned rod

We will investigate longitudinal vibrations of an axial loaded rod with linear fractional damping for application. This problem is quite important in engineering applications. Also, the rods are used as a structural element in many civil and mechanical engineering problems. The governing equation motion of a tensioned rod with fractional damping is introduced as

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M100','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M100">View MathML</a>

(51)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M101','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M101">View MathML</a> is the longitudinal displacement of the rod, ε is a small dimensionless parameter, m denotes the mass and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M102','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M102">View MathML</a> defines the damping coefficient. It is assumed that the tension P is characterised as a small periodic perturbation <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M103','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M103">View MathML</a> on the steady-state tension <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M104','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M104">View MathML</a>

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M105','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M105">View MathML</a>

(52)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M106','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M106">View MathML</a> is the frequency of the rod [24]. Introducing the dimensionless quantities as

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M107','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M107">View MathML</a>

(53)

the new dimensionless parameters are

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M108','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M108">View MathML</a>

(54)

where L is the length of the rod. Thus, the dimensionless equation is presented as

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M109','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M109">View MathML</a>

(55)

For the simply supported beam, the boundary conditions are

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M110','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M110">View MathML</a>

(56)

Considering Eq. (55), the operators corresponding to the general model are

(57)

(58)

(59)

and the other terms are

(60)

(61)

Thus, the spatial function <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M116','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M116">View MathML</a> satisfies

(62)

(63)

Finally, the solution of eigenvalue-eigenfunction problem (62) is

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M119','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M119">View MathML</a>

(64)

In this problem, three different cases arise at ε-order as follows.

5.1.1 <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M37','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M37">View MathML</a> away from <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M38">View MathML</a> and 0, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M5','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M5">View MathML</a> away from <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M40','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M40">View MathML</a>

By the general solution (23), we may write

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M124','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M124">View MathML</a>

(65)

Thus, the displacement is obtained as

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M125','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M125">View MathML</a>

(66)

In Figure 1, it is observed that the damping and the natural frequency changed for different modes. The damping decreases and the natural frequency increases as the number of modes enlarges.

thumbnailFigure 1. Displacement-time graph for different mode values (<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M126','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M126">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M127','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M127">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M128','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M128">View MathML</a>).

5.1.2 <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M37','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M37">View MathML</a> close to 0 and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M5','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M5">View MathML</a> away from <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M40','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M40">View MathML</a>

This case corresponds to <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M132','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M132">View MathML</a>. Using Eq. (28), we get

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M133','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M133">View MathML</a>

(67)

Thus, the amplitude and displacement are calculated respectively as follows:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M134','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M134">View MathML</a>

(68)

and

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M135','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M135">View MathML</a>

(69)

Furthermore, the supplementary term of the natural frequency from a fractional derivative is

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M136','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M136">View MathML</a>

(70)

The variation of a supplementary term from a fractional derivative according to α-order is shown in Figure 2. The effects of the order of a fractional derivative on the displacement-time curves are seen readily in Figure 3. The damping accelerates acutely in the classic damping approach, namely <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M137','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M137">View MathML</a>.

thumbnailFigure 2. Supplementary term versusαfor various mode values at<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M138','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M138">View MathML</a>(<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M126','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M126">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M127','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M127">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M141','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M141">View MathML</a>).

thumbnailFigure 3. Displacement-time curves for the different values ofα(<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M126','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M126">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M143','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M143">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M144','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M144">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M145','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M145">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M146','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M146">View MathML</a>).

5.1.3 <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M37','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M37">View MathML</a> close to <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M38">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M5','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M5">View MathML</a> away from <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M40','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M40">View MathML</a>

In this part, we get the principal parametric resonance such that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M151','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M151">View MathML</a>. Then the stability boundaries are

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M152','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M152">View MathML</a>

(71)

Figure 4 shows the effects of α-order on the critical value N and the variation of an unstable region with some different values of α. It is observed that the critical value N becomes zero for <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M153','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M153">View MathML</a>. The unstable region diminishes as α increases.

thumbnailFigure 4. Stability boundaries for various fractional order for second mode (<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M154','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M154">View MathML</a>).

5.2 The dynamic analysis of an axially loaded viscoelastic beam resting on foundation

The fractional viscoelastic beam with axial load is resting on linear elastic foundation. This type of foundation is known as Winkler foundation. In the linear Winkler foundation model, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M155','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M155">View MathML</a> denotes the soil coefficient. The beam is modelled by fractional Kelvin-Voight viscoelastic material. The governing equation is given by

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M156','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M156">View MathML</a>

(72)

where E represents the modulus of elasticity, I is the moment of inertia and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M104','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M104">View MathML</a> denotes axial force. Now, let us introduce the dimensionless quantities

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M158','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M158">View MathML</a>

(73)

and the new dimensionless parameters are

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M159','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M159">View MathML</a>

(74)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M160','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M160">View MathML</a> is the flexural stiffness coefficient. Then the dimensionless equation and the boundary conditions are obtained as

(75)

(76)

Thus, the operators corresponding to a general model are

(77)

(78)

(79)

and the other terms are

(80)

(81)

Then Eqs. (13) and (15) reduce to

(82)

(83)

and

(84)

(85)

Finally, the solutions of Eqs. (82) and (84) are

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M172','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M172">View MathML</a>

(86)

and

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M173','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M173">View MathML</a>

(87)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M174','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M174">View MathML</a> represents the particular solution from a non-homogeneous part. For the solution at ε-order, two different cases arise as follows.

5.2.1 <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M37','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M37">View MathML</a> away from <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M38">View MathML</a> and 0, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M5','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M5">View MathML</a> away from <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M40','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M40">View MathML</a>

Using the general solution (23), we get

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M179','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M179">View MathML</a>

(88)

The amplitude and displacement are obtained

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M180','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M180">View MathML</a>

(89)

and

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M181','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M181">View MathML</a>

(90)

Thus, the supplementary term of the natural frequency due to a fractional derivative is

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M182','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M182">View MathML</a>

(91)

5.2.2 <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M37','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M37">View MathML</a> away from 0 and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M38">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M5','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M5">View MathML</a> close to <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M40','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M40">View MathML</a>

In this case, using Eq. (45), the stability boundaries which correspond to the primary resonance <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M187','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M187">View MathML</a> are given as

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M188','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M188">View MathML</a>

(92)

where the coefficient is

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M189','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/104/mathml/M189">View MathML</a>

(93)

6 Conclusion and discussions

In this study, the general model subject to internal and external excitation is developed. The general model proposed for continuum is linear and one-dimensional. The effect of the damping term which is obtained from viscoelastic material properties is modelled with a fractional derivative. The dynamic analysis of the general model is examined by the method of multiple time scales. The approximate solutions are derived in terms of operators. The external force term is considered at order one. This consideration leads to sum and difference type of resonance in addition to primary and parametric resonance cases. The application of the general solution to two specific engineering problems is presented. The solvability boundaries are approximately obtained and numerically illustrated. It is shown that the order of the fractional derivative has an effect on natural frequencies and stability boundaries. It is shown that the stable region becomes smaller with increasing fractional order. And also, the coefficient of a fractional damping term has similar effects to fractional order.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors read and approved the final manuscript.

Acknowledgements

Dedicated to Professor Hari M Srivastava.

References

  1. Rossikhin, YA, Shitikova, MV: Application of fractional calculus for dynamic approximate analytical solutions problems of solid mechanics: novel trends and recent results. Appl. Mech. Rev.. 63, (2010) Article ID 010801

  2. Debnath, L: Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci.. 54, 3413–3442 (2003)

  3. Pakdemirli, M: Vibrations of continuous systems with a general operator notation suitable for perturbative calculations. J. Sound Vib.. 246(5), 841–851 (2001). Publisher Full Text OpenURL

  4. Özhan, B, Pakdemirli, M: A general solution procedure for the forced vibrations of a continuous system with cubic nonlinearities: primary resonance case. J. Sound Vib.. 325(4-5), 894–906 (2009). Publisher Full Text OpenURL

  5. Özhan, B, Pakdemirli, M: A general solution procedure for the forced vibrations of a continuous system with cubic nonlinearities: three-to-one internal resonances with external excitation. J. Sound Vib.. 329(13), 2603–2615 (2010). Publisher Full Text OpenURL

  6. Özhan, B, Pakdemirli, M: Principal parametric resonances of a general continuous system with cubic nonlinearities. Appl. Math. Comput.. 219(5), 2412–2423 (2012). Publisher Full Text OpenURL

  7. Ghayesh, MH, Kazemirad, S, Darabi, MA: A general solution procedure for vibrations of systems with cubic nonlinearities and nonlinear/time-dependent internal boundary conditions. J. Sound Vib.. 330(22), 5382–5400 (2011). Publisher Full Text OpenURL

  8. Agnieszka, B, Malinowskaa, D, Torres, FM: Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative. Comput. Math. Appl.. 59, 3110–3116 (2010). Publisher Full Text OpenURL

  9. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam (2006)

  10. Deü, JF, Matignon, D: Simulation of fractionally damped mechanical systems by means of a Newmark-diffusive scheme. Comput. Math. Appl.. 59, 1745–1753 (2010). Publisher Full Text OpenURL

  11. Bagley, RL, Calico, RA: The fractional order state equations for the control of viscoelastically damped structures. J. Guid. Control Dyn.. 14(2), 304–311 (1991). PubMed Abstract | Publisher Full Text OpenURL

  12. Bagley, RL, Torvik, PJ: Fractional calculus - a different approach to the analysis of viscoelastically damped structures. AIAA J.. 21(5), 741–748 (1983). Publisher Full Text OpenURL

  13. Bagley, RL, Torvik, PJ: Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J.. 23(6), 918–925 (1985). Publisher Full Text OpenURL

  14. Rossikhin, YA, Shitikova, MV: A new method for solving dynamic problems of fractional derivative viscoelasticity. Int. J. Eng. Sci.. 39, 149–176 (2001). PubMed Abstract | Publisher Full Text OpenURL

  15. Mainardi, F: Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpinteri A, Mainardi F (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 291–348. Springer, New York (1997)

  16. Cooke, JA, Keltie, RF: Determination of the impulse response of a viscoelastic beam using a fractional derivative constitutive model. ASME Des. Engineering Division Publications. DE. 5, 137–141 (1987)

  17. Skaar, SB, Michel, AN, Miller, RK: Stability of viscoelastic control systems. IEEE Trans. Autom. Control. 33(4), 348–357 (1988). Publisher Full Text OpenURL

  18. French, M, Rogers, J: A survey of fractional calculus for structural dynamics applications. Kissimmee, FL. (2001)

  19. Demir, DD, Bildik, N, Sinir, BG: Application of fractional calculus in the dynamics of beams. Bound. Value Probl.. 135, 1–13 (2012)

  20. Demir, DD, Bildik, N, Sinir, BG: Linear dynamical analysis of fractionally damped beams and rods. J. Eng. Math. (2013) doi:10.1007/s10665-013-9642-9

  21. Pakdemirli, M, Boyacı, H: The direct-perturbation methods versus the discretization-perturbation method: linear systems. J. Sound Vib.. 199(5), 825–832 (1997). Publisher Full Text OpenURL

  22. Rossikhin, YA, Shitikova, MV: On fallacies in the decision between the Caputo and Riemann-Liouville fractional derivatives for the analysis of the dynamic response of a nonlinear viscoelastic oscillator. Mech. Res. Commun.. 45, 22–27 (2012)

  23. Nayfeh, AH: Introduction to Perturbation Techniques, Wiley, New York (1981)

  24. Chen, LQ, Zhao, WJ, Zu, JW: Transient responses of an axially accelerating viscoelastic string constituted by a fractional differentiation law. J. Sound Vib.. 278, 861–871 (2004). Publisher Full Text OpenURL