SpringerOpen Newsletter

Receive periodic news and updates relating to SpringerOpen.

This article is part of the series Proceedings of the International Congress in Honour of Professor Hari M. Srivastava.

Open Access Research

The Dirichlet problem for the Laplace equation in supershaped annuli

Diego Caratelli1, Johan Gielis2*, Ilia Tavkhelidze3 and Paolo E Ricci4

Author Affiliations

1 Microwave Sensing, Signals and Systems, Delft University of Technology, Delft, The Netherlands

2 Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium

3 Faculty of Exact and Natural Sciences, Tbilisi State University, Tbilisi, Georgia

4 Faculty of Engineering, Campus Bio-Medico University, Rome, Italy

For all author emails, please log on.

Boundary Value Problems 2013, 2013:113  doi:10.1186/1687-2770-2013-113

The electronic version of this article is the complete one and can be found online at: http://www.boundaryvalueproblems.com/content/2013/1/113


Received:20 December 2012
Accepted:17 April 2013
Published:3 May 2013

© 2013 Caratelli et al.; licensee Springer

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The Dirichlet problem for the Laplace equation in normal-polar annuli is addressed by using a suitable Fourier-like technique. Attention is in particular focused on the wide class of domains whose boundaries are defined by the so-called ‘superformula’ introduced by Gielis. A dedicated numerical procedure based on the computer algebra system Mathematica© is developed in order to validate the proposed methodology. In this way, highly accurate approximations of the solution, featuring properties similar to the classical ones, are obtained.

Introduction

Many problems of mathematical physics and electromagnetics are related to the Laplacian [1]. In recent papers [2-9], the classical Fourier projection method [10,11] for solving boundary-value problems (BVPs) for the Laplace and Helmholtz equations in canonical domains has been extended in order to address similar differential problems in simply connected starlike domains, whose boundaries may be regarded as an anisotropically stretched unit circle centered at the origin.

In this contribution, a suitable technique useful to compute the coefficients of the Fourier-like expansion representing the solution of the Dirichlet boundary-value problem for the Laplace equation in complex annular domains is presented. In particular, the boundaries of the considered domains are supposed to be defined by the so-called Gielis formula [12]. Regular functions are assumed to describe the boundary values, but the proposed approach can be easily generalized in the case of weakened hypotheses. In order to verify and validate the developed methodology, a suitable numerical procedure based on the computer algebra system Mathematica© has been adopted. By using such a procedure, a point-wise convergence of the Fourier-like series representation of the solution has been observed in the regular points of the boundaries, with Gibbs-like phenomena potentially occurring in the quasi-cusped points. The obtained numerical results are in good agreement with theoretical findings by Carleson [13].

The Laplacian in stretched polar coordinates

Let us introduce in the real plane the usual polar coordinate system

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M1">View MathML</a>

(1)

and the polar equations

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M2','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M2">View MathML</a>

(2)

relevant to the boundaries of the supershaped annulus <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M3">View MathML</a> which is described by the following chain of inequalities:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M4','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M4">View MathML</a>

(3)

with <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M5','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M5">View MathML</a>. In (2) <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M6','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M6">View MathML</a> are assumed to be piece-wise <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M7','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M7">View MathML</a> functions satisfying the condition

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M8','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M8">View MathML</a>

(4)

In this way, upon introducing the stretched radius ϱ such that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M9','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M9">View MathML</a>

(5)

with <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M10','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M10">View MathML</a>, the considered annular domain <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M3">View MathML</a> can be readily obtained by assuming <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M5','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M5">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M13">View MathML</a>.

Remark Note that in the stretched coordinate system <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M14','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M14">View MathML</a>, the original domain <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M3">View MathML</a> is transformed into the circular annulus of radii a and b, respectively. Hence, in this system one can use classical techniques to solve the Laplace equation, including the eigenfunction method [11].

Let us consider a piece-wise function <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M17','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M17">View MathML</a> and the Laplace operator in polar coordinates

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M18','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M18">View MathML</a>

(6)

In the considered stretched coordinate system Δ can be represented by setting

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M19','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M19">View MathML</a>

(7)

In this way, by denoting <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M6','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M6">View MathML</a> as <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M21','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M21">View MathML</a> for the sake of shortness, one can readily find

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M22','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M22">View MathML</a>

(8)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M23','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M23">View MathML</a>

(9)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M24','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M24">View MathML</a>

(10)

where the dot superscript denotes the differentiation with respect to the angle ϑ. Substituting equations (8)-(10) into equation (6) finally yields

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M25','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M25">View MathML</a>

(11)

As it can be easily noticed, upon setting <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M26','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M26">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M27','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M27">View MathML</a>, the classical expression of the Laplacian in polar coordinates is recovered.

The Dirichlet problem for the Laplace equation

Let us consider the interior Dirichlet problem for the Laplace equation in a starlike annulus <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M3">View MathML</a>, whose boundaries <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M29','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M29">View MathML</a> are described by the polar equations <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M30','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M30">View MathML</a> respectively

(12)

Under the mentioned assumptions, one can prove the following theorem.

TheoremLet

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M32','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M32">View MathML</a>

(13)

where

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M33','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M33">View MathML</a>

(14)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M34','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M34">View MathML</a>being the usual Neumann symbol. Then the boundary-value problem (12) for the Laplace equation admits a classical solution<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M35','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M35">View MathML</a>such that the following Fourier-like series expansion holds true:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M36','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M36">View MathML</a>

(15)

For each indexm, define

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M37','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M37">View MathML</a>

(16)

and set, for shortness, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M38">View MathML</a>. In this way, the coefficients<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M39','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M39">View MathML</a>and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M40','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M40">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M41','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M41">View MathML</a>appearing in (15) can be determined by solving the infinite linear system

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M42','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M42">View MathML</a>

(17)

where

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M43','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M43">View MathML</a>

(18)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M44">View MathML</a>

(19)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M45','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M45">View MathML</a>

(20)

with<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M46','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M46">View MathML</a>, and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M47','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M47">View MathML</a>.

Proof Upon noting that in the stretched coordinate system <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M14','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M14">View MathML</a> introduced in the x, y plane, the considered domain <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M3">View MathML</a> turns into the circular annulus of radii a and b, one can readily adopt the usual eigenfunction method [11] in combination with the separation of variables (with respect to r and ϑ). As a consequence, elementary solutions of the problem can be searched in the form

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M50','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M50">View MathML</a>

(21)

Substituting into the Laplace equation, one easily finds that the functions <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M51','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M51">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M52','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M52">View MathML</a> must satisfy the ordinary differential equations

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M53','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M53">View MathML</a>

(22)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M54','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M54">View MathML</a>

(23)

respectively. The parameter μ is a separation constant whose choice is governed by the physical requirement that at any fixed point in the real plane the scalar field <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M55','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M55">View MathML</a> must be single-valued. So, by setting <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M56','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M56">View MathML</a>, one can easily find

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M57','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M57">View MathML</a>

(24)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M58','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M58">View MathML</a> denote arbitrary constants. The radial function <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M51','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M51">View MathML</a> satisfying (23) can be readily expressed as follows:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M60','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M60">View MathML</a>

(25)

with <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M61','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M61">View MathML</a>. Therefore, the general solution of the Dirichlet problem (12) can be searched in the form

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M62','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M62">View MathML</a>

(26)

Enforcing the Dirichlet boundary condition readily yields <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M63','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M63">View MathML</a>. Hence, using the classical Fourier projection method, equations (17)-(20) follow after some trivial manipulations. □

It is worth noting that the derived expressions still hold under the assumption that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M6','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M6">View MathML</a> are piecewise continuous functions, and the boundary values are described by square integrable, not necessarily continuous, functions so that the relevant Fourier coefficients <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M65','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M65">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M66','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M66">View MathML</a> in equation (14) are finite quantities.

Numerical procedure

In the following numerical examples, let us assume, for the boundaries <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M29','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M29">View MathML</a> of the considered annulus, general polar equations of the type

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M68','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M68">View MathML</a>

(27)

as introduced by Gielis in [12]. Very different characteristic geometries, including ellipses, Lamé curves, ovals, and m-fold symmetric figures are obtained by assuming suitable values of the parameters <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M69','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M69">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M70','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M70">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M71','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M71">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M72','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M72">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M73','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M73">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M74','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M74">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M75','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M75">View MathML</a> in (27). It is emphasized that almost all two-dimensional normal-polar annular domains can be described, or closely approximated, by (27).

In order to assess the performance of the proposed methodology in terms of numerical accuracy and convergence rate, the relative boundary error has been evaluated as follows:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M76','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M76">View MathML</a>

(28)

with <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M77','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M77">View MathML</a> being the usual <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M78','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M78">View MathML</a> norm, and where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M79','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M79">View MathML</a> denotes the partial sum of order N relevant to the Fourier-like series expansion representing the solution of the boundary-value problem for the Laplace equation, namely

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M80','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M80">View MathML</a>

(29)

Remark It is to be noticed that where the boundary values exhibit a rapidly oscillating behavior, the order N of the expansion (29) approximating the solution of the problem should be increased accordingly in order to achieve the desired numerical accuracy.

First example

By assuming in (27) <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M81','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M81">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M82','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M82">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M83','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M83">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M84','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M84">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M85','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M85">View MathML</a>, the annulus <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M3">View MathML</a> features a triangular strip-like shape. Let <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M87','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M87">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M88','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M88">View MathML</a> be the functions describing the boundary values. Under these assumptions, the relative boundary error <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M89','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M89">View MathML</a> as a function of the number N of terms in the truncated series expansion (29) exhibits the behavior shown in Figure 1. As it appears from Figure 2, the selection of the expansion order <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M90','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M90">View MathML</a> leads to a very accurate Fourier-like representation <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M91','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M91">View MathML</a> of the solution (featuring boundary error <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M92','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M92">View MathML</a>). The spatial distribution of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M91','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M91">View MathML</a> is shown in Figure 3, whereas the magnitude and phase of the relevant Fourier expansion coefficients <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M40','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M40">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M41','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M41">View MathML</a> (<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M96','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M96">View MathML</a>) are plotted in Figure 4.

thumbnailFigure 1. Relative boundary error<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M97','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M97">View MathML</a>as a function of the orderNof the truncated Fourier-like series expansion representing the solution of the Dirichlet problem for the Laplace equation in the supershaped annulus<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M98','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M98">View MathML</a>described by the Gielis formula with parameters<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M99','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M99">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M100','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M100">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M101','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M101">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M102','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M102">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M103','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M103">View MathML</a>.

thumbnailFigure 2. Boundary behavior along<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M104','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M104">View MathML</a>(a) and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M105','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M105">View MathML</a>(b) of the partial sum<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M106','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M106">View MathML</a>of order<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M107','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M107">View MathML</a>representing the solution of the Dirichlet problem for the Laplace equation in the supershaped annulus<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M98','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M98">View MathML</a>described by the Gielis formula with parameters<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M99','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M99">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M100','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M100">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M101','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M101">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M102','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M102">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M103','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M103">View MathML</a>.

thumbnailFigure 3. Spatial distribution of the Fourier-like series expansion<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M114','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M114">View MathML</a>of order<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M107','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M107">View MathML</a>representing the solution of the Dirichlet problem for the Laplace equation in the supershaped annulus<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M98','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M98">View MathML</a>described by the Gielis formula with parameters<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M99','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M99">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M100','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M100">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M101','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M101">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M102','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M102">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M103','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M103">View MathML</a>.

thumbnailFigure 4. Magnitude (a), (b) and phase (c), (d) of the coefficients<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M122','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M122">View MathML</a>and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M123','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M123">View MathML</a>relevant to the expansion<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M124','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M124">View MathML</a>of order<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M107','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M107">View MathML</a>representing the solution of the Dirichlet problem for the Laplace equation in the supershaped annulus<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M98','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M98">View MathML</a>described by the Gielis formula with parameters<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M99','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M99">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M100','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M100">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M101','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M101">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M102','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M102">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M103','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M103">View MathML</a>.

Second example

In the second numerical example, we turn to the consideration of the class of annuli having one or both boundaries featuring a polygonal contour. In this respect, it is not difficult to show that the general k-sided convex regular polygon can be readily described by the following specialized version of Gielis’ formula [14]:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M132','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M132">View MathML</a>

(30)

In this way, the methodology detailed in the previous section can be used straightforwardly. In particular, upon assuming in (27) <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M133','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M133">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M134','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M134">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M135','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M135">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M136','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M136">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M137','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M137">View MathML</a>, as well as <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M138','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M138">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M139','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M139">View MathML</a>, and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M140','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M140">View MathML</a>, with <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M141','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M141">View MathML</a>, the annulus <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M3">View MathML</a> may be regarded as the result of the Boolean subtraction of an ovaloid from a square. Let <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M143','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M143">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M144','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M144">View MathML</a> be the functions describing the boundary values along <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M145','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M145">View MathML</a>, respectively. Under these assumptions, the relative boundary error <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M89','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M89">View MathML</a> exhibits the behavior shown in Figure 5. As it appears from Figure 6, the selection of the expansion order <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M147','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M147">View MathML</a> results in an extremely accurate Fourier-like series representation <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M91','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M91">View MathML</a> of the solution (with boundary error <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M149','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M149">View MathML</a>). The spatial distribution of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M150','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M150">View MathML</a> is shown in Figure 7, whereas the magnitude and phase of the relevant Fourier expansion coefficients <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M40','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M40">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M41','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M41">View MathML</a> are plotted in Figure 8.

thumbnailFigure 5. Relative boundary error<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M97','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M97">View MathML</a>as a function of the orderNof the truncated Fourier-like series expansion representing the solution of the Dirichlet problem for the Laplace equation in the supershaped annulus<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M98','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M98">View MathML</a>described by the Gielis formula with parameters<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M155','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M155">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M156','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M156">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M157','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M157">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M158','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M158">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M159','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M159">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M160','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M160">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M161','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M161">View MathML</a>, and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M162','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M162">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M163','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M163">View MathML</a>.

thumbnailFigure 6. Boundary behavior along<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M104','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M104">View MathML</a>(a) and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M105','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M105">View MathML</a>(b) of the partial sum<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M106','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M106">View MathML</a>of order<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M167','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M167">View MathML</a>representing the solution of the Dirichlet problem for the Laplace equation in the supershaped annulus<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M98','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M98">View MathML</a>described by the Gielis formula with parameters<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M155','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M155">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M156','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M156">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M157','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M157">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M158','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M158">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M159','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M159">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M160','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M160">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M161','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M161">View MathML</a>, and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M162','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M162">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M163','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M163">View MathML</a>.

thumbnailFigure 7. Spatial distribution of the Fourier-like series expansion<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M124','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M124">View MathML</a>of order<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M167','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M167">View MathML</a>representing the solution of the Dirichlet problem for the Laplace equation in the supershaped annulus<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M98','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M98">View MathML</a>described by the Gielis formula with parameters<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M155','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M155">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M156','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M156">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M157','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M157">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M158','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M158">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M159','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M159">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M160','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M160">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M161','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M161">View MathML</a>, and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M162','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M162">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M163','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M163">View MathML</a>.

thumbnailFigure 8. Magnitude (a), (b) and phase (c), (d) of the coefficients<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M122','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M122">View MathML</a>and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M123','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M123">View MathML</a>relevant to the expansion<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M124','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M124">View MathML</a>of order<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M167','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M167">View MathML</a>representing the solution of the Dirichlet problem for the Laplace equation in the supershaped annulus<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M98','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M98">View MathML</a>described by the Gielis formula with parameters<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M155','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M155">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M156','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M156">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M157','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M157">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M158','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M158">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M159','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M159">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M160','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M160">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M161','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M161">View MathML</a>, and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M162','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M162">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M163','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M163">View MathML</a>.

Remark It has been observed that an <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M78','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/113/mathml/M78">View MathML</a> norm of the difference between the exact solution and the relevant approximation is generally negligible. Point-wise convergence seems to be verified in the considered domains, with the only exception of a set of measure zero consisting of quasi-cusped points. In the neighborhood of these points, oscillations of the truncated order solution, recalling the classical Gibbs phenomenon, usually take place.

Conclusion

A Fourier-like projection method, in combination with the adoption of a suitable stretched coordinate system, has been developed for solving the Dirichlet problem for the Laplace equation in supershaped annuli. In this way, analytically based expressions of the solution of the considered class of BVPs can be derived by using classical quadrature rules, thus overcoming the need for cumbersome numerical techniques such as finite-difference or finite-element methods. The proposed approach has been successfully validated by means of a dedicated numerical procedure based on the computer-aided algebra tool Mathematica©. A point-wise convergence of the expansion series representing the solution seems to be verified with the only exception of a set of measure zero consisting of the quasi-cusped points along the boundary of the problem domain. In these points, Gibbs-like oscillations may occur. The computed results are found to be in good agreement with the theoretical findings on Fourier series.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

DC proved the main theorem regarding the solution of the Laplace equation in supershaped annuli and drafted the paper. JG carried out the verification of the methodology and its application to Gielis domains. IT performed the numerical examples. PER derived the analytical expression of the Laplacian operator in stretched coordinates and helped to draft the manuscript. All authors read and approved the final manuscript.

Acknowledgements

Dedicated to Professor Hari M Srivastava.

This research has been carried out under the grant PRIN/2006 Cap. 7320.

References

  1. Gakhov, FD: Boundary Value Problems, Dover, New York (1990)

  2. Natalini, P, Patrizi, R, Ricci, PE: The Dirichlet problem for the Laplace equation in a starlike domain of a Riemann surface. Numer. Algorithms. 28, 215–227 (2001). Publisher Full Text OpenURL

  3. Caratelli, D, Ricci, PE: The Dirichlet problem for the Laplace equation in a starlike domain. Las Vegas, 14-17 July 2008. (2008)

  4. Caratelli, D, Germano, B, Gielis, J, He, MX, Natalini, P, Ricci, PE: Fourier Solution of the Dirichlet Problem for the Laplace and Helmholtz Equations in Starlike Domains, Tbilisi University Press, Tbilisi (2010)

  5. Caratelli, D, Natalini, P, Ricci, PE, Yarovoy, A: The Neumann problem for the Helmholtz equation in a starlike planar domain. Appl. Math. Comput.. 216, 556–564 (2010). Publisher Full Text OpenURL

  6. Caratelli, D, Gielis, J, Natalini, P, Ricci, PE, Tavkelidze, I: The Robin problem for the Helmholtz equation in a starlike planar domain. Georgian Math. J.. 18, 465–480 (2011)

  7. Caratelli, D, Gielis, J, Ricci, PE: Fourier-like solution of the Dirichlet problem for the Laplace equation in k-type Gielis domains. J. Pure Appl. Math., Adv. Appl.. 5, 99–111 (2011)

  8. Caratelli, D, Ricci, PE, Gielis, J: The Robin problem for the Laplace equation in a three-dimensional starlike domain. Appl. Math. Comput.. 218, 713–719 (2011)

  9. Gielis, J, Caratelli, D, Fougerolle, Y, Ricci, PE, Gerats, T: Universal natural shapes from unifying shape description to simple methods for shape analysis and boundary value problems. PLoS ONE doi:10.1371/journal.pone.0029324 (2012)

  10. Tolstov, GP: Fourier Series, Dover, New York (1962)

  11. Lebedev, NN: Special Functions and Their Applications, Dover, New York (1972)

  12. Gielis, J: A generic geometric transformation that unifies a wide range of natural and abstract shapes. Am. J. Bot.. 90, 333–338 (2003). PubMed Abstract | Publisher Full Text OpenURL

  13. Carleson, L: On convergence and growth of partial sums of Fourier series. Acta Math.. 116, 135–157 (1966). Publisher Full Text OpenURL

  14. Lenjou, K: Krommen en oppervlakken van Lamé and Gielis. MSc thesis, Catholic University of Leuven (2005)