Skip to main content

Existence of nonnegative solutions for a fractional m-point boundary value problem at resonance

Abstract

We consider the fractional differential equation

D 0 + q u(t)=f ( t , u ( t ) ) ,0<t<1,

satisfying the boundary conditions

D 0 + p u(t) | t = 0 = D 0 + p − 1 u(t) | t = 0 =⋯= D 0 + p − n + 1 u(t) | t = 0 =0,u(1)= ∑ i = 1 m − 2 α i u( ξ i ),

where D 0 + q is the Riemann-Liouville fractional order derivative. The parameters in the multi-point boundary conditions are such that the corresponding differential operator is a Fredholm map of index zero. As a result, the minimal and maximal nonnegative solutions for the problem are obtained by using a fixed point theorem of increasing operators.

MSC:26A33, 34A08.

1 Introduction

Let us consider the fractional differential equation

D 0 + q u(t)=f ( t , u ( t ) ) ,0<t<1,
(1.1)

with the boundary conditions (BCs)

{ D 0 + p u ( t ) | t = 0 = D 0 + p − 1 u ( t ) | t = 0 = ⋯ = D 0 + p − n + 1 u ( t ) | t = 0 = 0 , u ( 1 ) = ∑ i = 1 m − 2 α i u ( ξ i ) ,
(1.2)

where n≥1, max{q−2,0}≤p<q−1, n<q≤n+1, ∑ i = 1 m − 2 α i ξ i q − 1 =1, α i >0, 0< ξ 1 < ξ 2 <⋯< ξ m − 2 <1, m≥3. We assume that f:[0,1]×[0,∞)→[0,∞) is continuous. A boundary value problem at resonance for ordinary or fractional differential equations has been studied by several authors, including the most recent works [1–7] and the references therein. In the most papers mentioned above, the coincidence degree theory was applied to establish existence theorems. But in [8], Wang obtained the minimal and maximal nonnegative solutions for a second-order m-point boundary value problem at resonance by using a new fixed point theorem of increasing operators, and in this paper we use this method of Wang to establish the existence theorem of equations (1.1) and (1.2).

For the convenience of the reader, we briefly recall some notations.

Let X, Z be real Banach spaces, L:dom(L)⊂X→Z be a Fredholm map of index zero and P:X→X, Q:Z→Z be continuous projectors such that Im(P)=Ker(L), Ker(Q)=Im(L) and X=Ker(L)⊕Ker(P), Z=Im(L)⊕Im(Q). It follows that L | Ker ( P ) ∩ dom ( L ) :Ker(P)∩dom(L)→Im(L) is invertible. We denote the inverse of the map by K P :Im(L)→Ker(P)∩dom(L). Since dimIm(Q)=dimKer(L), there exists an isomorphism J:Im(Q)→Ker(L). Let Ω be an open bounded subset of X. The map N:X→Z will be called L-compact on Ω ¯ if QN( Ω ¯ ) and K P (I−Q)( Ω ¯ ) are compact. We take H=L+ J − 1 P, then H:dom(L)⊂X→Z is a linear bijection with bounded inverse and (JQ+ K P (I−Q))(L+ J − 1 P)=(L+ J − 1 P)(JQ+ K P (I−Q))=I. We know from [9] that K 1 =H(K∩dom(L)) is a cone in Z.

Theorem 1.1 [9]

N(u)+ J − 1 P(u)=H( u ˜ ), where

u ˜ =P(u)+JQN(u)+ K P (I−Q)N(u)

and u ˜ is uniquely determined.

From the above theorem, the author [9] obtained that the assertions

  1. (i)

    P(u)+JQN(u)+ K P (I−Q)N(u):K∩dom(L)→K∩dom(L) and

  2. (ii)

    N(u)+ J − 1 P(u):K∩dom(L)→ K 1 are equivalent.

We also need the following definition and theorem.

Definition 1.1 [8]

Let K be a normal cone in a Banach space X, u 0 ≤ v 0 , and u 0 , v 0 ∈K∩dom(L) are said to be coupled lower and upper solutions of the equation Lx=Nx if

{ L u 0 ≤ N u 0 , L v 0 ≥ N v 0 .

Theorem 1.2 [8]

Let L:dom(L)⊂X→Z be a Fredholm operator of index zero, K be a normal cone in a Banach space X, u 0 , v 0 ∈K∩dom(L), u 0 ≤ v 0 , and N:[ u 0 , v 0 ]→Z be L-compact and continuous. Suppose that the following conditions are satisfied:

(C1) u 0 and v 0 are coupled lower and upper solutions of the equation Lx=Nx;

(C2) N+ J − 1 P:K∩dom(L)→ K 1 is an increasing operator.

Then the equation Lx=Nx has a minimal solution u ∗ and a maximal solution v ∗ in [ u 0 , v 0 ]. Moreover,

u ∗ = lim n → ∞ u n , v ∗ = lim n → ∞ v n ,

where

u n = ( L + J − 1 P ) − 1 ( N + J − 1 P ) u n − 1 , v n = ( L + J − 1 P ) − 1 ( N + J − 1 P ) v n − 1 ,

n=1,2,3,… and u 0 ≤ u 1 ≤ u 2 ≤⋯≤ u n ≤⋯≤ v n ≤⋯≤ v 2 ≤ v 1 ≤ v 0 .

2 Preliminaries

In this section, we present some necessary basic knowledge and definitions about fractional calculus theory.

Definition 2.1 (see Equation 2.1.1 in [10])

The R-L fractional integral I 0 + q u of order q∈R (q>0) is defined by

I 0 + q u(t):= 1 Γ ( q ) ∫ 0 t u ( τ ) d τ ( t − τ ) 1 − q (t>0).

Here Γ(q) is the gamma function.

Definition 2.2 (see Equation 2.1.5 in [10])

The R-L fractional derivative D 0 + q u of order q∈R (q>0) is defined by

D 0 + q u ( t ) = ( d d t ) n I 0 + n − q u ( t ) = 1 Γ ( n − q ) ( d d t ) n ∫ 0 t u ( τ ) d τ ( t − τ ) q − n + 1 ( n = [ q ] + 1 , t > 0 ) ,

where [q] means the integral part of q.

Lemma 2.1 [11]

If q 1 , q 2 >0, q>0, then, for u(t)∈ L p (0,1), the relations

I 0 + q 1 I 0 + q 2 u(t)= I 0 + q 1 + q 2 u(t)

and

D 0 + q 1 I 0 + q 1 u(t)=u(t)

hold a.e. on [0,1].

Lemma 2.2 (see [11])

Let q>0, n=[q]+1, D 0 + q u(t)∈ L 1 (0,1), then we have the equality

I 0 + q D 0 + q u(t)=u(t)+ ∑ i = 1 n C i t q − i ,

where C i ∈R (i=1,2,…,n) are some constants.

Lemma 2.3 (see Corollary 2.1 in [10])

Let q>0 and n=[q]+1, the equation D 0 + q u(t)=0 is valid if and only if u(t)= ∑ i = 1 n C i t q − i , where C i ∈R (i=1,2,…,n) are arbitrary constants.

Let X=Z=C[0,1] with the norm ∥u∥= sup t ∈ [ 0 , 1 ] |u(t)|, then X and Z are Banach spaces.

Let K={u∈X:u(t)≥0,t∈[0,1]}. It follows from Theorem 1.1.1 in [12] that K is a normal cone.

Let dom(L)={u(t)∈X∣ D 0 + q u(t)∈Z,u(t) satisfies BCs  (1.2) }.

We define the operators L:dom(L)→Z by

(Lu)(t)= D 0 + q u(t)
(2.1)

and N:K→Z by

(Nu)(t)=f ( t , u ( t ) ) ,

then BVPs (1.1) and (1.2) can be written as Lu=Nu, u∈K∩dom(L).

Lemma 2.4 If the operator L is defined in (2.1), then

  1. (i)

    Ker(L)={c⋅ t q − 1 ∣c∈R},

  2. (ii)

    Im(L)={y∈Z∣ ∫ 0 1 ( 1 − s ) q − 2 ∑ i = 1 m − 2 α i ξ i q − 1 ∫ ξ i s s y(τ)dτds=0}=:L.

Proof (i) It can be seen from Lemma 2.3 and BCs (1.2) that Ker(L)={câ‹… t q − 1 ∣c∈R}.

  1. (ii)

    If y∈Im(L), then there exists a function u∈dom(L) such that y(t)= D 0 + q u(t), by Lemma 2.2, we have

    I 0 + q y(t)=u(t)+ c 1 t q − 1 +⋯+ c n t q − n .

It follows from BCs (1.2) and the equation ∑ i = 1 m − 2 α i ξ i q − 1 =1 that

I 0 + q y(1)= ∑ i = 1 m − 2 I 0 + q α i y( ξ i )

and noting the definition of I 0 + q , we have

I 0 + q y(t)= 1 Γ ( q ) ∫ 0 t ( t − s ) q − 1 y(s)ds= q − 1 Γ ( q ) ∫ 0 t ( t − s ) q − 2 ∫ 0 s y(τ)dτds.

Thus,

q − 1 Γ ( q ) ∫ 0 1 ( 1 − s ) q − 2 ∫ 0 s y ( τ ) d τ d s = q − 1 Γ ( q ) ∑ i = 1 m − 2 α i ∫ 0 ξ i ( ξ i − s ) q − 2 ∫ 0 s y ( τ ) d τ d s = q − 1 Γ ( q ) ∑ i = 1 m − 2 α i ξ i ∫ 0 1 ( ξ i − ξ i s ) q − 2 ∫ 0 ξ i s y ( τ ) d τ d s = q − 1 Γ ( q ) ∑ i = 1 m − 2 α i ξ i q − 1 ∫ 0 1 ( 1 − s ) q − 2 ∫ 0 ξ i s y ( τ ) d τ d s ,

which is

∫ 0 1 ( 1 − s ) q − 2 ∑ i = 1 m − 2 α i ξ i q − 1 ∫ ξ i s s y(τ)dτds=0.

Then y∈L, hence Im(L)⊂L.

On the other hand, if y∈L, let u(t)= I 0 + q y(t), then u∈dom(L), and D 0 + q u(t)= D 0 + q I 0 + q y(t)=y(t), which implies that y∈Im(L), thus L⊂Im(L). In general Im(L)=L. Clearly, Im(L) is closed in Z and dimKer(L)=codimIm(L)=1, thus L is a Fredholm operator of index zero. This completes the proof. □

In what follows, some property operators are defined. We define continuous projectors P:X→X by

(Pu)(t)=q ∫ 0 1 u(s)ds⋅ t q − 1

and Q:Z→Z by

(Qu)(t)= 1 γ 0 ∫ 0 1 ( 1 − s ) q − 2 ∑ i = 1 m − 2 α i ξ i q − 1 ∫ ξ i s s u(τ)dτds,

where

γ 0 = ∫ 0 1 ( 1 − s ) q − 2 ∑ i = 1 m − 2 α i ξ i q − 1 ∫ ξ i s s d τ d s = ∫ 0 1 s ( 1 − s ) q − 2 d s ( 1 − ∑ i = 1 m − 2 α i ξ i q ) = B ( 2 , q − 1 ) ( 1 − ∑ i = 1 m − 2 α i ξ i q ) > 0 .

B(x,y) is the beta function defined by

B(x,y)= ∫ 0 1 t x − 1 ( 1 − t ) y − 1 dt.

By calculating, we easily obtain P 2 =P, Q 2 =Q, and X=Ker(L)⊕Ker(P), Z=Im(L)⊕Im(Q). We also define J:Im(Q)→Ker(L) by

J(c)=c t q − 1 ,∀c∈R

and K P :Im(L)→dom(L)∩Ker(P) by

( K P ( u ) ) (t)= ( I 0 + q u ) (t)= 1 Γ ( q ) ∫ 0 t ( t − s ) q − 1 u(s)ds,

thus

( Q N ( u ) ) (t)= 1 γ 0 ∫ 0 1 ( 1 − s ) q − 2 ∑ i = 1 m − 2 α i ξ i q − 1 ∫ ξ i s s f ( τ , u ( τ ) ) dτds

and

( K P ( I − Q ) N ( u ) ) ( t ) = 1 Γ ( q ) ∫ 0 t ( t − s ) q − 1 f ( s , u ( s ) ) d s − 1 Γ ( q ) ∫ 0 t ( t − s ) q − 1 1 γ 0 ∫ 0 1 ( 1 − s ˜ ) q − 2 ∑ i = 1 m − 2 α i ξ i q − 1 ∫ ξ i s ˜ s ˜ f ( τ , u ( τ ) ) d τ d s ˜ d s .

Lemma 2.5 Let Ω be any open bounded subset of K∩dom(L), then QN( Ω ¯ ) and K P (I−Q)N( Ω ¯ ) are compact, which implies that N is L-compact on Ω ¯ for any open bounded set Ω⊂K∩dom(L).

Proof For a positive integer n, let Ω={u∈K∩dom(L):∥u∥≤n}, M= sup ( t , u ) f(t,u(t)), (t,u)∈[0,1]×[0,n]. It is easy to see that QN( Ω ¯ ) is compact. Now, we prove that K P (I−Q)N( Ω ¯ ) is compact. For ∀u∈ Ω ¯ , we have

∥ ( K P ( I − Q ) N ( u ) ) ( t ) ∥ = sup t ∈ [ 0 , 1 ] | 1 Γ ( q ) ∫ 0 t ( t − s ) q − 1 f ( s , u ( s ) ) d s − 1 Γ ( q ) ∫ 0 t ( t − s ) q − 1 1 γ 0 ∫ 0 1 ( 1 − s ˜ ) q − 2 ∑ i = 1 m − 2 α i ξ i q − 1 ∫ ξ i s ˜ s ˜ f ( τ , u ( τ ) ) d τ d s ˜ d s | ≤ sup t ∈ [ 0 , 1 ] | 1 Γ ( q ) ∫ 0 t ( t − s ) q − 1 f ( s , u ( s ) ) d s | + sup t ∈ [ 0 , 1 ] | 1 Γ ( q ) ∫ 0 t ( t − s ) q − 1 1 γ 0 ∫ 0 1 ( 1 − s ˜ ) q − 2 ∑ i = 1 m − 2 α i ξ i q − 1 ∫ ξ i s ˜ s ˜ f ( τ , u ( τ ) ) d τ d s ˜ d s | ≤ 2 M Γ ( q ) sup t ∈ [ 0 , 1 ] | ∫ 0 t ( t − s ) q − 1 d s | = 2 M Γ ( q + 1 ) ,

which implies that K P (I−Q)N( Ω ¯ ) is bounded.

Moreover, for each u∈ Ω ¯ , let t 1 , t 2 ∈[0,1] and t 1 > t 2 , then

∥ ( K P ( I − Q ) N ( u ) ) ( t 1 ) − ( K P ( I − Q ) N ( u ) ) ( t 2 ) ∥ ≤ | 1 Γ ( q ) ∫ 0 t 1 ( t 1 − s ) q − 1 f ( s , u ( s ) ) d s − 1 Γ ( q ) ∫ 0 t 2 ( t 2 − s ) q − 1 f ( s , u ( s ) ) d s | + | 1 Γ ( q ) ∫ 0 t 1 ( t 1 − s ) q − 1 1 γ 0 ∫ 0 1 ( 1 − s ˜ ) q − 2 ∑ i = 1 m − 2 α i ξ i q − 1 ∫ ξ i s ˜ s ˜ f ( τ , u ( τ ) ) d τ d s ˜ d s − 1 Γ ( q ) ∫ 0 t 2 ( t 2 − s ) q − 1 1 γ 0 ∫ 0 1 ( 1 − s ˜ ) q − 2 ∑ i = 1 m − 2 α i ξ i q − 1 ∫ ξ i s ˜ s ˜ f ( τ , u ( τ ) ) d τ d s ˜ d s | ≤ | 1 Γ ( q ) ∫ 0 t 2 ( t 1 − s ) q − 1 f ( s , u ( s ) ) d s − 1 Γ ( q ) ∫ 0 t 2 ( t 2 − s ) q − 1 f ( s , u ( s ) ) d s | + | 1 Γ ( q ) ∫ t 2 t 1 ( t 1 − s ) q − 1 f ( s , u ( s ) ) d s | + | 1 Γ ( q ) ∫ 0 t 2 ( t 1 − s ) q − 1 1 γ 0 ∫ 0 1 ( 1 − s ˜ ) q − 2 ∑ i = 1 m − 2 α i ξ i q − 1 ∫ ξ i s ˜ s ˜ f ( τ , u ( τ ) ) d τ d s ˜ d s − 1 Γ ( q ) ∫ 0 t 2 ( t 2 − s ) q − 1 1 γ 0 ∫ 0 1 ( 1 − s ˜ ) q − 2 ∑ i = 1 m − 2 α i ξ i q − 1 ∫ ξ i s ˜ s ˜ f ( τ , u ( τ ) ) d τ d s ˜ d s | + | 1 Γ ( q ) ∫ t 2 t 1 ( t 1 − s ) q − 1 1 γ 0 ∫ 0 1 ( 1 − s ˜ ) q − 2 ∑ i = 1 m − 2 α i ξ i q − 1 ∫ ξ i s ˜ s ˜ f ( τ , u ( τ ) ) d τ d s ˜ d s | ≤ 2 M Γ ( q ) | ∫ 0 t 1 ( t 1 − s ) q − 1 d s − ∫ 0 t 2 ( t 2 − s ) q − 1 d s | + 2 M Γ ( q ) | ∫ t 2 t 1 ( t 1 − s ) q − 1 d s | ≤ 2 M Γ ( q ) | ∫ 0 t 1 ( t 1 − s ) q − 1 d s − ∫ 0 t 2 ( t 2 − s ) q − 1 d s | + 2 M Γ ( q ) | t 1 − t 2 | = 2 M Γ ( q ) | t 1 ∫ 0 1 ( t 1 − t 1 s ) q − 1 d s − t 2 ∫ 0 1 ( t 2 − t 2 s ) q − 1 d s | + 2 M Γ ( q ) | t 1 − t 2 | = 2 M Γ ( q + 1 ) | t 1 q − t 2 q | + 2 M Γ ( q ) | t 1 − t 2 | = 2 M Γ ( q + 1 ) | q η q − 1 | ⋅ | t 1 − t 2 | + 2 M Γ ( q ) | t 1 − t 2 | , η = t 1 + θ ( t 2 − t 1 ) , 0 < θ < 1 ≤ ( 2 q + 2 ) M Γ ( q ) | t 1 − t 2 | .

Thus

∀ε>0,∃δ= Γ ( q ) ( 2 q + 2 ) M ε

such that

∥ K P ( I − Q ) N ( u ) ( t 1 ) − K P ( I − Q ) N ( u ) ( t 2 ) ∥ <ε

for

| t 1 − t 2 |<δ

and each

u∈ Ω ¯ .

It is concluded that N is L-compact on Ω ¯ . This completes the proof. □

3 Main result

In this section, we establish the existence of the nonnegative solution to equations (1.1) and (1.2).

Theorem 3.1 Suppose

(H1) There exist u 0 , v 0 ∈K∩dom(L) such that u 0 ≤ v 0 and

{ D 0 + q u 0 ( t ) ≤ f ( t , u 0 ( t ) ) , ∀ t ∈ [ 0 , 1 ] , D 0 + q v 0 ( t ) ≥ f ( t , v 0 ( t ) ) , ∀ t ∈ [ 0 , 1 ] .

(H2) For any x,y∈K∩dom(L), satisfying

f ( t , x ( t ) ) −f ( t , y ( t ) ) ≥−q ( ∫ 0 1 x ( t ) d t − ∫ 0 1 y ( t ) d t ) ,

where ∀t∈[0,1] and u 0 (t)≤y(t)≤x(t)≤ v 0 (t), then problems (1.1) and (1.2) have a minimal solution u ∗ and a maximal solution v ∗ in [ u 0 , v 0 ], respectively.

Proof By condition (H1), we know that

L u 0 ≤N u 0 ,L v 0 ≥N v 0 ,

so condition (C1) in Theorem 1.1 holds.

In addition, for each u∈K,

( P ( u ) + J Q N ( u ) + K P ( I − Q ) N ( u ) ) ( t ) = q ∫ 0 1 u ( s ) d s ⋅ t q − 1 + 1 γ 0 ∫ 0 1 ( 1 − s ) q − 2 ∑ i = 1 m − 2 α i ξ i q − 1 ∫ ξ i s s f ( τ , u ( τ ) ) d τ d s ⋅ t q − 1 + 1 Γ ( q ) ∫ 0 t ( t − s ) q − 1 f ( s , u ( s ) ) d s − 1 Γ ( q ) ∫ 0 t ( t − s ) q − 1 1 γ 0 ∫ 0 1 ( 1 − s ˜ ) q − 2 ∑ i = 1 m − 2 α i ξ i q − 1 ∫ ξ i s ˜ s ˜ f ( τ , u ( τ ) ) d τ d s ˜ d s = q ∫ 0 1 u ( s ) d s ⋅ t q − 1 + 1 Γ ( q ) ∫ 0 t ( t − s ) q − 1 f ( s , u ( s ) ) d s + 1 γ 0 ∫ 0 1 ( 1 − s ) q − 2 ∑ i = 1 m − 2 α i ξ i q − 1 ∫ ξ i s s f ( τ , u ( τ ) ) d τ d s ( t q − 1 − 1 Γ ( q ) ∫ 0 t ( t − s ) q − 1 d s ) ≥ 1 γ 0 ∫ 0 1 ( 1 − s ) q − 2 ∑ i = 1 m − 2 α i ξ i q − 1 ∫ ξ i s s f ( τ , u ( τ ) ) d τ d s ( t q − 1 − t q Γ ( q + 1 ) ) ≥ 0 .

Thus (P+JQN+ K P (I−Q)N)(K)⊂K, that is, N+ J − 1 P:K∩dom(L)→ K 1 by virtue of the equivalence. From condition (H2), we have that N+ J − 1 P:K∩dom(L)→ K 1 is a monotone increasing operator. Then, in accordance with Lemma 2.5 and Theorem 1.2, we obtain a minimal solution u ∗ and a maximal solution v ∗ in [ u 0 , v 0 ] for problems (1.1) and (1.2). Thus we can define iterative sequences { u n (t)} and { v n (t)} by

u n = ( L + J − 1 P ) − 1 ( N + J − 1 P ) u n − 1 = ( J Q + K P ( I − Q ) ) ( N + J − 1 P ) u n − 1 = ( J Q + K P ( I − Q ) ) ( f ( t , u n − 1 ( t ) ) + q ∫ 0 1 u n − 1 ( s ) d s ) = 1 γ 0 ∫ 0 1 ( 1 − s ) q − 2 ∑ i = 1 m − 2 α i ξ i q − 1 ∫ ξ i s s ( f ( τ , u n − 1 ( τ ) ) + q ∫ 0 1 u n − 1 ( s ˆ ) d s ˆ ) d τ d s ⋅ t q − 1 + 1 Γ ( q ) ∫ 0 t ( t − s ) q − 1 ( f ( s , u n − 1 ( s ) ) + q ∫ 0 1 u n − 1 ( s ˜ ) d s ˜ ) d s − 1 Γ ( q ) ∫ 0 t ( t − s ) q − 1 1 γ 0 ∫ 0 1 ( 1 − s ˜ ) q − 2 ∑ i = 1 m − 2 α i ξ i q − 1 ⋅ ∫ ξ i s ˜ s ˜ ( f ( τ , u n − 1 ( τ ) ) + q ∫ 0 1 u n − 1 ( s ˆ ) d s ˆ ) d τ d s ˜ d s

and

v n = ( L + J − 1 P ) − 1 ( N + J − 1 P ) v n − 1 = ( J Q + K P ( I − Q ) ) ( N + J − 1 P ) v n − 1 = ( J Q + K P ( I − Q ) ) ( f ( t , v n − 1 ( t ) ) + q ∫ 0 1 v n − 1 ( s ) d s ) = 1 γ 0 ∫ 0 1 ( 1 − s ) q − 2 ∑ i = 1 m − 2 α i ξ i q − 1 ∫ ξ i s s ( f ( τ , v n − 1 ( τ ) ) + q ∫ 0 1 v n − 1 ( s ˆ ) d s ˆ ) d τ d s ⋅ t q − 1 + 1 Γ ( q ) ∫ 0 t ( t − s ) q − 1 ( f ( s , v n − 1 ( s ) ) + q ∫ 0 1 v n − 1 ( s ˜ ) d s ˜ ) d s − 1 Γ ( q ) ∫ 0 t ( t − s ) q − 1 1 γ 0 ∫ 0 1 ( 1 − s ˜ ) q − 2 ∑ i = 1 m − 2 α i ξ i q − 1 ⋅ ∫ ξ i s ˜ s ˜ ( f ( τ , v n − 1 ( τ ) ) + q ∫ 0 1 v n − 1 ( s ˆ ) d s ˆ ) d τ d s ˜ d s , n = 1 , 2 , 3 , …

Then from Theorem 1.2 we get { u n } and { v n } converge uniformly to u ∗ (t) and v ∗ (t), respectively. Moreover,

u 0 ≤ u 1 ≤ u 2 ≤⋯≤ u n ≤⋯≤ v n ≤⋯≤ v 2 ≤ v 1 ≤ v 0 .

 □

4 Example

We consider the following problem:

D 0 + 3 2 u(t)= ( u 2 u 2 + 1 + t ) m ,0<t<1,m>0,
(4.1)

subject to BCs

D 0 + 1 4 u(t) | t = 0 =0,u(1)= 2 u ( 1 2 ) .
(4.2)

We can choose

u 0 (t)= 1 Γ ( 3 2 ) ∫ 0 t ( t − s ) 1 2 s m ds+ t 1 2 ≤ 1 Γ ( 3 2 ) ∫ 0 t ( t − s ) 1 2 ( s + 1 ) m ds+ t 1 2 = v 0 (t),

then

D 0 + 3 2 u 0 (t)= t m ≤ ( u 2 u 2 + 1 + t ) m ≤ ( t + 1 ) m = D 0 + 3 2 v 0 (t).

Let dom(L)={u(t)∈X∣ D 0 + 3 2 u(t)∈Z,u(t) satisfies BCs (4.2)}, then for any x,y∈K∩dom(L), we have

( x 2 x 2 + 1 + t ) m − ( y 2 y 2 + 1 + t ) m ≥− 3 2 ( ∫ 0 1 x ( t ) d t − ∫ 0 1 y ( t ) d t ) ,

where u 0 (t)≤y(t)≤x(t)≤ v 0 (t). Finally, by Theorem 3.1, equation (4.1) with BCs (4.2) has a minimal solution u ∗ and a maximal solution v ∗ in [ u 0 , v 0 ].

References

  1. Infantea G, Zima M: Positive solutions of multi-point boundary value problems at resonance. Nonlinear Anal. 2008, 69: 2458–2465. 10.1016/j.na.2007.08.024

    Article  MathSciNet  MATH  Google Scholar 

  2. Kosmatov N: Multi-point boundary value problems on an unbounded domain at resonance. Nonlinear Anal. 2008, 68: 2158–2171. 10.1016/j.na.2007.01.038

    Article  MATH  MathSciNet  Google Scholar 

  3. Yang L, Shen CF: On the existence of positive solution for a kind of multi-point boundary value problem at resonance. Nonlinear Anal. 2010, 72: 4211–4220. 10.1016/j.na.2010.01.051

    Article  MATH  MathSciNet  Google Scholar 

  4. Bai Z, Zhang Y: The existence of solutions for a fractional multi-point boundary value problem. Comput. Math. Appl. 2010, 60: 2364–2372.

    Article  MATH  MathSciNet  Google Scholar 

  5. Zhang Y, Bai Z: Existence of solutions for nonlinear fractional three-point boundary value problems at resonance. J. Appl. Math. Comput. 2011, 36: 417–440. 10.1007/s12190-010-0411-x

    Article  MATH  MathSciNet  Google Scholar 

  6. Du Z: Solvability of functional differential equations with multi-point boundary value problems at resonance. Comput. Math. Appl. 2008, 55: 2653–2661.

    Article  MATH  MathSciNet  Google Scholar 

  7. Han X: Positive solutions for a three-point boundary value problem at resonance. J. Math. Anal. Appl. 2007, 36: 556–568.

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang F, Cui YJ, Zhang F: Existence of nonnegative solutions for second order m-point boundary value problems at resonance. Appl. Math. Comput. 2011, 217: 4849–4855. 10.1016/j.amc.2008.04.015

    Article  MATH  MathSciNet  Google Scholar 

  9. Cremins CT: A fixed-point index and existence theorems for semilinear equations in cones. Nonlinear Anal. 2001, 42: 789–806.

    Article  MathSciNet  MATH  Google Scholar 

  10. Kilbsa AA, Srivastava HM, Trujillo JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam; 2006.

    Google Scholar 

  11. Chen Y, Tang X: Positive solutions of fractional differential equations at resonance on the half-line. Bound. Value Probl. 2012. doi:10.1186/1687–2770–2012–64

    Google Scholar 

  12. Guo DJ, Lakshmikantham V: Nonlinear Problems in Abstract Cones. Academic Press, New York; 1988.

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their many constructive comments and suggestions to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haidong Qu.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors declare that the study was realized in collaboration with the same responsibility. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Qu, H., Liu, X. Existence of nonnegative solutions for a fractional m-point boundary value problem at resonance. Bound Value Probl 2013, 127 (2013). https://doi.org/10.1186/1687-2770-2013-127

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-2770-2013-127

Keywords