Skip to main content

Periodic solutions for N+2-body problems with N+1 fixed centers

Abstract

In this paper, we prove the existence of a new periodic solution for N+2-body problems with N+1 fixed centers and strong-force potentials. In this model, N particles with equal masses are fixed at the vertices of a regular N-gon and the (N+1)th particle is fixed at the center of the N-gon, the (N+2)th particle winding around N particles.

MSC:34C15, 34C25, 70F10.

1 Introduction and main results

In the eighteenth century, the 2-fixed center problem was studied by Euler [1–3]. Here, let us consider the N+1-fixed center problem: We assume N particles q 1 , q 2 ,…, q N with equal masses 1 are fixed at the vertices e − 1 2 π N j =(cos 2 π j N ,sin 2 π j N ) (j=1,…,N) of a regular polygon and the (N+1)th particle q N + 1 is fixed at the origin (0,0), the (N+2)th particle with mass m N + 2 is attracted by the other particles, and moves according to Newton’s second law and a more general power law than the Newton’s universal gravitational square law. In this system, the position q(t) for the (N+2)th particle satisfies the following equation:

m N + 2 q ¨ (t)= ∑ i = 1 N + 1 m i m N + 2 ( q ( t ) − q i ) | q ( t ) − q i | α + 2 .
(1.1)

Equivalently,

q ¨ (t)= ∑ i = 1 N ( q ( t ) − q i ) | q ( t ) − q i | α + 2 + m N + 1 ( q ( t ) − q N + 1 ) | q ( t ) − q N + 1 | α + 2 ,
(1.2)
q ¨ (t)= ∂ U ( q ) ∂ q ,
(1.3)

where

α>0andU(q)= ∑ i = 1 N 1 | q ( t ) − q i | α + m N + 1 | q ( t ) − q N + 1 | α .

The type of system (1.2) is called a singular Hamiltonian system which attracts many researchers (see [1–10] and [11–16]).

Specially, Gordon [10] proved the Keplerian elliptical orbits are the minimizers of Lagrangian action defined on the space for non-zero winding numbers.

In this paper, we use a variational minimizing method to look for a periodic solution for the (N+2)th particle which winds around the q i (i=1,…,N+1).

Definition 1.1 [10]

Let C:x(t):[a,b]→ R 2 be a given oriented closed curve, and p∉C. Define φ:C→ S 1 :

φ(t)= x ( t ) − p | x ( t ) − p | .

When some point on C goes around the curve once, its image point φ(x(t)) will go around S 1 a number of times. This number is defined as the winding number of the curve C relative to the point p and is denoted by deg(x(t)−p).

Let

f(q)= ∫ 0 1 [ 1 2 | q ˙ ( t ) | 2 + U ( q ) ] dt,
(1.4)
q∈ Λ 1 = { q ∈ W 1 , 2 ( R / Z , R 2 ) , q ( t ) ≠ q i , for  i = 1 , … , N + 1 , q ( t + k N ) = ( cos ( 2 k Ï€ N ) − sin ( 2 k Ï€ N ) sin ( 2 k Ï€ N ) cos ( 2 k Ï€ N ) ) q ( t ) , deg ( q ( t ) − q i ) = 1 , for  i = 1 , … , N , deg ( q ( t ) − q N + 1 ) = − 1 } ,
(1.5)
q∈ Λ 2 = { q ∈ W 1 , 2 ( R / Z , R 2 ) , q ( t ) ≠ q i , for  i = 1 , … , N + 1 , q ( t + k N ) = ( cos ( 2 k Ï€ N ) − sin ( 2 k Ï€ N ) sin ( 2 k Ï€ N ) cos ( 2 k Ï€ N ) ) q ( t ) , deg ( q ( t ) − q i ) = 0 , for  i = 1 , … , N , deg ( q ( t ) − q N + 1 ) = 1 } ,
(1.6)
q∈ Λ 3 = { q ∈ W 1 , 2 ( R / Z , R 2 ) , q ( t ) ≠ q i , for  i = 1 , … , N + 1 , q ( t + k N ) = ( cos ( 2 k Ï€ N ) − sin ( 2 k Ï€ N ) sin ( 2 k Ï€ N ) cos ( 2 k Ï€ N ) ) q ( t ) , deg ( q ( t ) − q i ) = 1 , for  i = 1 , … , N , deg ( q ( t ) − q N + 1 ) = 1 } ,
(1.7)
q∈ Λ 4 = { q ∈ W 1 , 2 ( R / Z , R 2 ) , q ( t ) ≠ q i , for  i = 1 , … , N + 1 , q ( t + k N ) = ( cos ( 2 k Ï€ N ) − sin ( 2 k Ï€ N ) sin ( 2 k Ï€ N ) cos ( 2 k Ï€ N ) ) q ( t ) , deg ( q ( t ) − q i ) = 1 , for  i = 1 , … , N , deg ( q ( t ) − q N + 1 ) = N − 1 } .
(1.8)

We have the following theorem.

Theorem 1.1 For α≥2, the minimizer of f(q) on Λ ¯ i (i=1,2,3,4) exists and it is a non-collision periodic solution of (1.1) or (1.2)-(1.3) (please see Figures 1-4 for N=4).

Figure 1
figure 1

q∈ Λ 1 .

Figure 2
figure 2

q∈ Λ 2 .

Figure 3
figure 3

q∈ Λ 3 .

Figure 4
figure 4

q∈ Λ 4 .

2 The proof of Theorem 1.1

We recall the following famous lemmas, which we need to prove Theorem 1.1.

Lemma 2.1 [9]

If x∈ W 1 , 2 (R/Z, R 2 ), α≥2, a>0, and there exists t 0 ∈[0,1] such that x( t 0 )=0, then ∫ 0 1 [ 1 2 | x ˙ ( t ) | 2 + a | x ( t ) | α ]dt=+∞.

If x n ⇀x in W 1 , 2 (R/Z, R 2 ) and ∃ t 0 , s.t. x( t 0 )=0, α≥2, then ∫ 0 1 1 | x n ( t ) | α dt→+∞.

Lemma 2.2 (Palais’s symmetry principle [17])

Let σ be an orthogonal representation of a finite or compact group G on a real Hilbert space H, and let f:H→R be such that for ∀σ∈G, f(σ⋅x)=f(x). Set H G ={x∈H:σ⋅x=x,∀σ∈G}. Then the critical point of f in H G is also a critical point of f in H.

Lemma 2.3 [5]

If X is a reflexive Banach space, M is a weakly closed subset of X, and f:M→R∪{+∞}, f≢+∞ is weakly lower semi-continuous and coercive, then f attains its infimum on M.

Lemma 2.4 (Poincare-Wirtinger inequality)

Let q∈ W 1 , 2 (R/ZT, R d ) and ∫ 0 T q(t)dt=0, then ∫ 0 T | q ˙ ( t ) | 2 dt≥ ( 2 π T ) 2 ∫ 0 T q ( t ) 2 dt. And the inequality takes the equality if and only if q(t)=αcos 2 π T t+βsin 2 π T t, α,β∈ R d .

We now prove Theorem 1.1.

Proof By the symmetry of Λ i , we know for ∀x∈ Λ i ,

∫ 0 T q(t)dt=0.
(2.1)

If q n (t)⇀q(t) in Λ ¯ i , then by Sobolev’s compact embedding theorem, we have q n (t)→q(t) in C[0,1].

  1. (i)

    If q(t)∈ Λ i , then lim n → + ∞ ∫ 0 1 U( q n (t))dt= ∫ 0 1 U( q n (t))dt. Since ∫ 0 1 q n dt=0, 1 2 ∫ 0 1 | q ˙ n | 2 dt can be regarded as the square of an equivalent norm for W 1 , 2 , so it is weakly lower semi-continuous, so lim ̲ f( q n (t))≥f(q).

  2. (ii)

    If q(t)∈∂ Λ i , then by Lemma 2.1, f(q)=+∞, we have ∫ 0 1 U( q n (t))dt→+∞. So, lim ̲ n → + ∞ f( q n )=+∞≥f(q). Hence f is w.l.s.c.

Using (2.1), we know that f(q) is coercive on Λ ¯ i . Lemma 2.3 guarantees that f(q) attains its infimum on Λ ¯ i . Let the minimizer be q Ëœ , then

f( q ˜ )= inf q ∈ Λ ¯ i f(q)<+∞.
(2.2)

If q Ëœ is a collision periodic solution, then there exist t 0 ∈[0,1] and j∈{1,2,…,N,N+1} such that q Ëœ ( t 0 )= q j . Let x(t)= q Ëœ (t)− q j and note x( t 0 )=0. By Lemma 2.1, we have

f ( q ˜ ) = ∫ 0 1 [ 1 2 | q ˜ ˙ ( t ) | 2 + m j | q ˜ ( t ) − q j | α + ∑ i ≠ j N + 1 m i | q ˜ ( t ) − q i | α ] d t ≥ ∫ 0 1 [ 1 2 | x ˙ ( t ) | 2 + m j | x ( t ) | α ] d t = + ∞ ,
(2.3)

which contradicts the inequality in (2.2). By Lemma 2.2, q Ëœ (t) is the critical point of f in W 1 , 2 (R/Z, R 2 ); therefore, q Ëœ (t) is a non-collision periodic solution.

This completes the proof of Theorem 1.1. □

References

  1. Euler M: De motu coproris ad duo centra virium fixa attracti. Nov. Commun. Acad. Sci. Imp. Petrop. 1766, 10: 207–242.

    Google Scholar 

  2. Euler M: De motu coproris ad duo centra virium fixa attracti. Nov. Commun. Acad. Sci. Imp. Petrop. 1767, 11: 152–184.

    Google Scholar 

  3. Euler M: Probleme un corps etant attire en raison reciproque quarree des distances vers deux points fixes donnes trouver les cas ou la courbe decrite par ce corps sera algebrique. Hist. Acad. R. Sci. Bell. Lett. Berlin 1767, 2: 228–249.

    Google Scholar 

  4. Ambrosetti A, Coti Zelati V: Critical points with lack of compactness and applications to singular dynamical systems. Ann. Mat. Pura Appl. 1987, 149: 237–259. 10.1007/BF01773936

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrosetti A, Coti Zelati V: Periodic Solutions for Singular Lagrangian Systems. Springer, Boston; 1993.

    Book  MATH  Google Scholar 

  6. Bahri A, Rabinowitz PH: A minimax method for a class of Hamiltonian systems with singular potentials. J. Funct. Anal. 1989, 82: 412–428. 10.1016/0022-1236(89)90078-5

    Article  MathSciNet  MATH  Google Scholar 

  7. Benci V, Giannoni G: Periodic solutions of prescribed energy for a class of Hamiltonian system with singular potentials. J. Differ. Equ. 1989, 82: 60–70. 10.1016/0022-0396(89)90167-8

    Article  MathSciNet  MATH  Google Scholar 

  8. Degiovanni M, Giannoni F: Dynamical systems with Newtonian type potentials. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 1988, 15: 467–494.

    MathSciNet  MATH  Google Scholar 

  9. Gordon W: Conservative dynamical systems involving strong forces. Trans. Am. Math. Soc. 1975, 204: 113–135.

    Article  MathSciNet  MATH  Google Scholar 

  10. Gordon W: A minimizing property of Keplerian orbits. Am. J. Math. 1977, 99: 961–971. doi:10.2307/2373993 10.2307/2373993

    Article  MathSciNet  MATH  Google Scholar 

  11. Rabinowitz PH: A note on periodic solutions of prescribed energy for singular Hamiltonian systems. J. Comput. Appl. Math. 1994, 52: 147–154. 10.1016/0377-0427(94)90354-9

    Article  MathSciNet  MATH  Google Scholar 

  12. Siegel C, Moser J: Lectures on Celestial Mechanics. Springer, Berlin; 1971.

    Book  MATH  Google Scholar 

  13. Wang XR, He S: Lagrangian actions on 3-body problems with two fixed centers. Bound. Value Probl. 2012., 2012: Article ID 28

    Google Scholar 

  14. Tanaka K: A prescribed energy problem for a singular Hamiltonian system with weak force. J. Funct. Anal. 1993, 113: 351–390. 10.1006/jfan.1993.1054

    Article  MathSciNet  MATH  Google Scholar 

  15. Tanaka K: A prescribed energy problem for conservative singular Hamiltonian system. Arch. Ration. Mech. Anal. 1994, 128: 127–164. 10.1007/BF00375024

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang SQ: Multiple geometrically distinct closed noncollision orbits of fixed energy for N -body type problems with strong force potentials. Proc. Am. Math. Soc. 1996, 124: 3039–3046. 10.1090/S0002-9939-96-03751-3

    Article  MathSciNet  MATH  Google Scholar 

  17. Palais R: The principle of symmetric criticality. Commun. Math. Phys. 1979, 69: 19–30. 10.1007/BF01941322

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the referees for their many helpful comments and suggestions and also express their sincere gratitude to Professor Zhang Shiqing for his discussions and corrections. This work is supported by NSF of China and Youth Fund of Mianyang Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Furong Zhao.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors declare that the study was realized in collaboration with the same responsibility. All authors read, checked and approved the final manuscript.

Authors’ original submitted files for images

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Zhao, F., Li, F. & Chen, J. Periodic solutions for N+2-body problems with N+1 fixed centers. Bound Value Probl 2013, 129 (2013). https://doi.org/10.1186/1687-2770-2013-129

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-2770-2013-129

Keywords