SpringerOpen Newsletter

Receive periodic news and updates relating to SpringerOpen.

Open Access Research

Stability analysis for impulsive stochastic fuzzy p-Laplace dynamic equations under Neumann or Dirichlet boundary condition

Ruofeng Rao1* and Zhilin Pu12

Author Affiliations

1 Institution of Mathematics, Yibin University, Yibin, Sichuan, 644007, P.R. China

2 College of Mathematics and Software Science, Sichuan Normal University, Chengdu, Sichuan, 610066, P.R. China

For all author emails, please log on.

Boundary Value Problems 2013, 2013:133  doi:10.1186/1687-2770-2013-133


The electronic version of this article is the complete one and can be found online at: http://www.boundaryvalueproblems.com/content/2013/1/133


Received:3 March 2013
Accepted:4 May 2013
Published:20 May 2013

© 2013 Rao and Pu; licensee Springer

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Under Neumann or Dirichlet boundary conditions, the stability of a class of delayed impulsive Markovian jumping stochastic fuzzy p-Laplace partial differential equations (PDEs) is considered. Thanks to some methods different from those of previous literature, the difficulties brought by fuzzy stochastic mathematical model and impulsive model have been overcome. By way of the Lyapunov-Krasovskii functional, Itô formula, Dynkin formula and a differential inequality, new LMI-based global stochastic exponential stability criteria for the above-mentioned PDEs are established. Some applications of the obtained results improve some existing results on neural networks. And some numerical examples are presented to illustrate the effectiveness of the proposed method due to the significant improvement in the allowable upper bounds of time delays.

MSC: 34D20, 34D23, 34B45, 34B37, 34K20.

Keywords:
differential inequality; Laplace diffusion; Markovian jumping

1 Introduction

In this paper, we are concerned with the following delayed impulsive Markovian jumping stochastic fuzzy p-Laplace partial differential equations (PDEs):

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M1">View MathML</a>

(1.1)

equipped with the boundary condition

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M2','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M2">View MathML</a>

(1.1a)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M3">View MathML</a> is a positive scalar, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M4','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M4">View MathML</a> is a bounded domain with a smooth boundary Ω of class <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M5','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M5">View MathML</a> by <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M6','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M6">View MathML</a>. The smooth functions <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M7','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M7">View MathML</a>. Denote <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M8','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M8">View MathML</a>, and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M9','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M9">View MathML</a> (<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M10','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M10">View MathML</a>) corresponds to the transmission delays at time t. <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M11','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M11">View MathML</a>. <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M12','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M12">View MathML</a> is called impulsive moment, satisfying <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M13">View MathML</a> with <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M14','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M14">View MathML</a>. <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M15','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M15">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M16','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M16">View MathML</a> denote the left-hand and right-hand limits at <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M12','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M12">View MathML</a>, respectively. <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M18','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M18">View MathML</a>, and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M19','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M19">View MathML</a> is the impulsive perturbation at time <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M12','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M12">View MathML</a>. We always assume <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M21','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M21">View MathML</a>. <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M22','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M22">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M23','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M23">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M24','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M24">View MathML</a> are continuous functions. ⋀ and ⋁ denote the fuzzy AND and OR operation, respectively. Each <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M25','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M25">View MathML</a> is scalar standard Brownian motion defined on a complete probability space <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M26','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M26">View MathML</a> with a natural filtration <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M27','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M27">View MathML</a>. The noise perturbation <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M28','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M28">View MathML</a> is a Borel measurable function. <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M29','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M29">View MathML</a> is a right-continuous Markov process on the probability space which takes values in the finite space <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M30','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M30">View MathML</a> with generator <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M31','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M31">View MathML</a> given by

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M32','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M32">View MathML</a>

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M33','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M33">View MathML</a> is transition probability rate from i to j (<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M34','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M34">View MathML</a>) and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M35','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M35">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M36','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M36">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M37','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M37">View MathML</a>. In addition, the transition rates of the Markovian chain are considered to be partially available, namely, some elements in transition rates matrix Π are time-invariant but unknown. For notational clarity, we denote <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M38">View MathML</a> with <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M39','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M39">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M40','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M40">View MathML</a> for a given <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M41','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M41">View MathML</a>. <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M42','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M42">View MathML</a> is a nonnegative scalar, satisfying <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M43','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M43">View MathML</a> for any given <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M41','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M41">View MathML</a>. In mode <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M45','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M45">View MathML</a>, we denote <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M46','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M46">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M47','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M47">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M48','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M48">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M49','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M49">View MathML</a>. Besides, impulse parameters matrices <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M50','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M50">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M51','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M51">View MathML</a> are denoted by <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M52','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M52">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M53','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M53">View MathML</a> for convenience. The boundary condition (1.1a) is called the Dirichlet boundary condition if <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M54','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M54">View MathML</a>, and the Neumann boundary condition if <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M55','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M55">View MathML</a>, where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M56','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M56">View MathML</a> denotes the outward normal derivative on Ω.

Remark 1.1 PDEs (1.1) own a wide range of physics and engineering backgrounds. They admit the following three Cohen-Grossberg neural networks (CGNNs) as their special cases.

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M57','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M57">View MathML</a>

(1.2)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M58','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M58">View MathML</a>

(1.3)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M59','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M59">View MathML</a>

(1.4)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M60','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M60">View MathML</a> denotes the Hadamard product of matrix <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M61','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M61">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M62','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M62">View MathML</a> (see, [1] or [2]), and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M63','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M63">View MathML</a> satisfies <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M7','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M7">View MathML</a> for all j, k, (t, x, v). <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M65','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M65">View MathML</a>, and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M66','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M66">View MathML</a>. Throughout this paper, for the mode <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M45','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M45">View MathML</a>, we denote <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M68','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M68">View MathML</a>, and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M69','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M69">View MathML</a>. <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M70','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M70">View MathML</a>, and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M71','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M71">View MathML</a>. <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M72','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M72">View MathML</a>.

The stability of p-Laplace diffusion stochastic CGNNs (1.2) was discussed by Xiongrui Wang, Ruofeng Rao and Shouming Zhong in 2012 [2], and the stability of deterministic system (1.3) was investigated by Xinhua Zhang, Shulin Wu and Kelin Li in 2011 [3]. Impulsive fuzzy CGNNs with nonlinear p-Laplace diffusion has never been studied as far as we know, and such a situation motivates our present study. Both the nonlinear p-Laplace diffusion and fuzzy mathematical model bring a great difficulty in setting up LMI criteria for the stability, and the stochastic functional differential equations model with nonlinear diffusion makes it harder. To study the stability of fuzzy CGNNs with diffusion, we have to construct a Lyapunov-Krasovskii functional in a non-matrix form (see, e.g., [4]). But stochastic mathematical formulae are always described in matrix forms. Furthermore, an impulsive model makes it harder. Recently, some new methods were employed to study the exponential stability for Markovian jumping, fuzzy neural networks in some related literature (see, e.g., [5-14]). Inspired by some methods and the idea of [3,4] and the other above-mentioned papers, we overcame the difficulties brought by the Markovian jumping fuzzy impulsive model. By way of the Lyapunov-Krasovskii functional, Itô formula, Dynkin formula, the variational methods in Sobolev space <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M73','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M73">View MathML</a> (Lemma 2.1), and a differential inequality, new LMI-based global exponential stability criteria for the above-mentioned PDEs are established; we obtain an LMI-based global stochastic exponential stability criterion of PDEs (1.1). Some applications to neural networks improve some existing results, which are illustrated by some numerical examples thanks to the significant improvement in the allowable upper bounds of time delays.

2 Preliminaries

Throughout this paper, we always assume that the following five conditions hold.

(H1) There exists a positive definite diagonal matrix <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M74','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M74">View MathML</a> such that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M75','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M75">View MathML</a>

(H2) There exist positive definite diagonal matrices <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M76','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M76">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M77','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M77">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M78','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M78">View MathML</a> such that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M79','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M79">View MathML</a>

for all <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M80','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M80">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M81','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M81">View MathML</a>.

(H3) There exist nonnegative symmetric matrices <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M82','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M82">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M83','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M83">View MathML</a> such that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M84','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M84">View MathML</a>

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M85','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M85">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M86','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M86">View MathML</a>.

(H4) <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M87','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M87">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M88','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M88">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M89','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M89">View MathML</a>.

It is obvious from (H4) that system (1.1) admits a zero solution <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M90','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M90">View MathML</a> corresponding to the initial data <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M91','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M91">View MathML</a>. For simplicity, we write <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M92','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M92">View MathML</a>. Denote <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M93','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M93">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M94','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M94">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M95','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M95">View MathML</a>. Denote <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M96','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M96">View MathML</a> for short.

For convenience’s sake, we introduce the following standard notations similar to those of [2].

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M97','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M97">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M98','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M98">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M99','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M99">View MathML</a> (<0), <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M100','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M100">View MathML</a> (⩽0), <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M101','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M101">View MathML</a> (<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M102','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M102">View MathML</a>), <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M103','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M103">View MathML</a> (<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M104','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M104">View MathML</a>), <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M105','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M105">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M106','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M106">View MathML</a>, the identity matrix I and the symmetric terms ∗.

In addition, we denote <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M107','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M107">View MathML</a> for any matrix <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M108','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M108">View MathML</a>; <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M109','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M109">View MathML</a> for any <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M110','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M110">View MathML</a>.

Next, we give the following lemma, which is completely similar to [[1], Lemma 2.3]. It can be derived by the Gauss formula (see, e.g., [2]).

Lemma 2.1 ([[1], Lemma 2.3], [[11], Lemma 6])

Let<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M111','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M111">View MathML</a>be a positive definite matrix, and letvbe a solution of system (1.1) with the boundary condition (1.1a). Then we have

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M112','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M112">View MathML</a>

3 Main results

Theorem 3.1Assume that<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M3">View MathML</a>. If the following three conditions hold:

(C1) there exist a sequence of positive scalars<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M114','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M114">View MathML</a> (<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M115','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M115">View MathML</a>) and positive definite diagonal matrices<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M116','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M116">View MathML</a> (<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M115','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M115">View MathML</a>) such that the following LMI conditions hold:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M118','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M118">View MathML</a>

(3.1)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M119','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M119">View MathML</a>

(3.2)

where matrices<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M120','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M120">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M121','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M121">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M122','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M122">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M123','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M123">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M124','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M124">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M125','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M125">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M126','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M126">View MathML</a>, and

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M127','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M127">View MathML</a>

(C2) <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M128','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M128">View MathML</a>, where<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M129','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M129">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M130','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M130">View MathML</a>;

(C3) there exists a constant<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M131','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M131">View MathML</a>such that<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M132','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M132">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M133','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M133">View MathML</a>and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M134','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M134">View MathML</a>, where<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M135','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M135">View MathML</a>with<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M136','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M136">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M137','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M137">View MathML</a>for all<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M138','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M138">View MathML</a>, and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M139','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M139">View MathML</a>is the unique solution of the equation<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M140','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M140">View MathML</a>.

Then the null solution of impulsive Markovian jumping stochastic fuzzy system (1.1) is globally stochastically exponentially stable in the mean square with the convergence rate<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M141','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M141">View MathML</a>.

Proof Consider the Lyapunov-Krasovskii functional

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M142','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M142">View MathML</a>

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M143','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M143">View MathML</a> is a solution for stochastic fuzzy system (1.1). Sometimes we may denote <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M144','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M144">View MathML</a> by v, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M145','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M145">View MathML</a> by <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M146','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M146">View MathML</a>, and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M147','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M147">View MathML</a> by <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M148','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M148">View MathML</a> for simplicity.

Let ℒ be the weak infinitesimal operator. Then it follows by Lemma 2.1 that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M149','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M149">View MathML</a>

(3.3)

On the other hand, we have

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M150','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M150">View MathML</a>

(3.4)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M151','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M151">View MathML</a>

(3.5)

From <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M152','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M152">View MathML</a> and the definition of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M153','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M153">View MathML</a>, it is clear that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M154','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M154">View MathML</a>.

So, we can conclude by (H1)-(H4)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M155','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M155">View MathML</a>

(3.6)

Completely similar to (2.7)-(2.9) in [2], we can get by the Itô formula

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M156','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M156">View MathML</a>

(3.7)

Owing to <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M157','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M157">View MathML</a>, we can get

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M158','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M158">View MathML</a>

(3.8)

From (C3), it is not difficult to conclude that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M159','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M159">View MathML</a>, where λ, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M160','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M160">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M161','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M161">View MathML</a>, ρ are defined in (C3), and so <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M162','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M162">View MathML</a>. Then, by (C2), the differential inequality lemma ([[2], Lemma 1.6]) yields <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M163','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M163">View MathML</a>, or

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M164','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M164">View MathML</a>

(3.9)

i.e.,

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M165','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M165">View MathML</a>

(3.10)

Therefore, we can see by the definition of global stochastic exponential stability (see, e.g., [15]) that the null solution of impulsive Markovian jumping stochastic fuzzy system (1.1) is globally stochastically exponentially stable in the mean square with the convergence rate <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M141','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M141">View MathML</a>. □

Particularly for the case of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M167','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M167">View MathML</a>, we get from the Poincaré inequality (see, e.g., [[16], Lemma 2.4]) that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M168','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M168">View MathML</a>, where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M169','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M169">View MathML</a> is the lowest positive eigenvalue of the boundary value problem

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M170','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M170">View MathML</a>

Theorem 3.2Let<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M167','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M167">View MathML</a>, and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M172','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M172">View MathML</a>. Then all the conclusions of Theorem 3.1 are true if its conditions are satisfied except that the<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M173','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M173">View MathML</a>is replaced by<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M174','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M174">View MathML</a>.

Proof Indeed, if <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M167','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M167">View MathML</a>, we can get by the Poincaré inequality

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M176','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M176">View MathML</a>

Then, by (3.3), we can similarly complete the rest of the proof by way of the methods in (3.4)-(3.10). □

4 Applications of main results in neural networks

Let <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M177','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M177">View MathML</a> with <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M178','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M178">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M179','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M179">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M180','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M180">View MathML</a>, and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M181','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M181">View MathML</a> satisfy the following.

(H1) There exist positive definite diagonal matrices <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M182','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M182">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M183','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M183">View MathML</a> such that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M184','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M184">View MathML</a>

for all <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M185','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M185">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M186','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M186">View MathML</a>.

(H2) There exists a positive definite diagonal matrix <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M187','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M187">View MathML</a> such that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M188','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M188">View MathML</a>

(H3) There exist positive definite diagonal matrices <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M76','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M76">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M190','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M190">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M78','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M78">View MathML</a> such that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M192','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M192">View MathML</a>

for all <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M80','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M80">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M81','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M81">View MathML</a>.

(H4) There exist nonnegative symmetric matrices <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M195','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M195">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M83','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M83">View MathML</a> such that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M197','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M197">View MathML</a>

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M85','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M85">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M86','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M86">View MathML</a>.

(H5) <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M200','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M200">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M201','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M201">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M89','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M89">View MathML</a>.

Applying our main results to Cohen-Grossberg neural networks (CGNNs), we can conclude the following corollary from Theorem 3.1 directly.

Corollary 4.1If the following three conditions hold:

(D1) there exist a positive scalar<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M203','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M203">View MathML</a>and a positive definite diagonal matrixPsuch that the following LMI conditions hold:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M204','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M204">View MathML</a>

(4.1)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M205','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M205">View MathML</a>

(4.2)

where matrices<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M206','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M206">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M207','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M207">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M208','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M208">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M209','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M209">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M210','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M210">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M211','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M211">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M125','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M125">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M213','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M213">View MathML</a>;

(D2) <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M128','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M128">View MathML</a>, where<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M215','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M215">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M216','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M216">View MathML</a>;

(D3) there exists a constant<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M131','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M131">View MathML</a>such that<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M132','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M132">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M133','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M133">View MathML</a>and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M134','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M134">View MathML</a>, where<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M135','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M135">View MathML</a>with<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M222','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M222">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M223','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M223">View MathML</a>for all<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M138','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M138">View MathML</a>, and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M139','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M139">View MathML</a>is the unique solution of the equation<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M140','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M140">View MathML</a>.

Then the null solution of impulsive stochastic fuzzy system (1.4) is globally stochastically exponentially stable in the mean square with the convergence rate<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M141','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M141">View MathML</a>.

Remark 4.1 Corollary 4.1 not only extends [[4], Theorem 3.1] from non-impulsive stochastic fuzzy CGNNs to impulsive stochastic fuzzy CGNNs, but also improves the criterion of [[4], Theorem 3.1] from the non-matrix form to the more condensed matrix form, which can be efficiently tested and verified by computer Matlab LMI toolbox.

If Markovian jumping and fuzzy factors are ignored, we can conclude the following corollary.

Corollary 4.2Assume that<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M3">View MathML</a>. If the following three conditions hold:

(E1) there exist a sequence of positive scalars<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M203','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M203">View MathML</a>and positive definite diagonal matricesPsuch that the following LMI conditions hold:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M230','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M230">View MathML</a>

(4.3)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M231','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M231">View MathML</a>

(4.4)

where matrices<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M108','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M108">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M233','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M233">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M234','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M234">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M211','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M211">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M125','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M125">View MathML</a>, and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M237','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M237">View MathML</a>;

(E2) <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M128','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M128">View MathML</a>, where<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M239','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M239">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M240','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M240">View MathML</a>;

(E3) there exists a constant<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M131','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M131">View MathML</a>such that<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M132','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M132">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M133','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M133">View MathML</a>and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M134','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M134">View MathML</a>, where<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M135','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M135">View MathML</a>with<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M222','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M222">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M247','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M247">View MathML</a>for all<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M138','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M138">View MathML</a>, and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M139','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M139">View MathML</a>is the unique solution of the equation<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M140','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M140">View MathML</a>,

then the null solution of impulsive stochastic system (1.2) is globally stochastically exponentially stable in the mean square with the convergence rate<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M141','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M141">View MathML</a>.

Remark 4.2 If letting <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M252','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M252">View MathML</a>, system (1.2) was investigated by [2]. However, LMIs criterion of Corollary 4.2 is more feasible and effective than that of [[2], Theorem 2.1]. In fact, we know from the Schur complement theorem that the LMI condition of [[2], Theorem 2.1] is equivalent to the inequality <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M253','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M253">View MathML</a>, where the term <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M254','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M254">View MathML</a> actually makes parameters amplify against <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M255','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M255">View MathML</a> if <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M256','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M256">View MathML</a> or <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M257','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M257">View MathML</a>. In other words, Corollary 4.2 can judge what [[2], Theorem 2.1] cannot do, which may be illustrated by Example 5.2 (below).

Corollary 4.3If the following three conditions hold:

(F1) there exist a positive scalar<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M203','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M203">View MathML</a>and a positive definite diagonal matrixPsuch that the following LMI conditions hold:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M259','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M259">View MathML</a>

(4.5)

where matrices<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M108','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M108">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M233','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M233">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M234','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M234">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M211','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M211">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M125','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M125">View MathML</a>, and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M265','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M265">View MathML</a>;

(F2) <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M128','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M128">View MathML</a>, where<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M267','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M267">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M268','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M268">View MathML</a>;

(F3) there exists a constant<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M131','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M131">View MathML</a>such that<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M132','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M132">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M133','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M133">View MathML</a>and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M134','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M134">View MathML</a>, where<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M135','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M135">View MathML</a>with<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M222','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M222">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M247','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M247">View MathML</a>for all<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M138','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M138">View MathML</a>, and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M139','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M139">View MathML</a>is the unique solution of the equation<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M140','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M140">View MathML</a>,

then the null solution of impulsive deterministic system (1.3) is globally stochastically exponentially stable in the mean square with the convergence rate<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M141','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M141">View MathML</a>.

Remark 4.3 For the same reason as in Remark 4.2, the LMI (4.5) of Corollary 4.3 is more feasible and effective than that of [[3], Theorem 3.1], which may be illustrated by a numerical example below (Example 5.1).

5 Numerical examples

In this section, two examples are given to illustrate that the criteria of Corollary 4.2 and Corollary 4.3 can judge what some existing criteria cannot do. The third numerical example is presented to illustrate the effectiveness of our main results (Theorems 3.1-3.2).

Example 5.1 Consider impulsive system (1.3) with the following parameters:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M280','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M280">View MathML</a>

(5.1)

In this section, we denote

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M281','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M281">View MathML</a>

Assume, in addition, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M282','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M282">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M283','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M283">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M284','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M284">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M285','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M285">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M286','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M286">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M287','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M287">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M288','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M288">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M289','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M289">View MathML</a> . <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M290','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M290">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M291','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M291">View MathML</a>. Assume that the boundary condition is the Dirichlet boundary one, and then <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M292','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M292">View MathML</a> (see, e.g., [16]). Assume that the lower limit of the time interval between impulses <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M293','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M293">View MathML</a>. From the differential inequality lemma [[2], Lemma 1.6] we know that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M294','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M294">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M131','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M131">View MathML</a>, and hence the upper limit of time delay <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M296','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M296">View MathML</a>.

With the above data, one can use computer Matlab LMI toolbox to solve the LMI (C1) of [[3], Theorem 3.1], and obtain <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M297','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M297">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M298','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M298">View MathML</a>. Next, we need verify (C2) in [[3], Theorem 3.1]. However, a direct computation derives <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M299','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M299">View MathML</a>, which implies <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M300','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M300">View MathML</a>. Hence, [[3], Theorem 3.1] cannot judge the stability of impulsive system (1.3) with the above data.

However, we can solve LMI (4.5) by Matlab LMI toolbox, and obtain <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M301','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M301">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M302','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M302">View MathML</a>. Further computation yields <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M303','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M303">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M304','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M304">View MathML</a>, and hence <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M128','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M128">View MathML</a>. In addition, a direct calculation derives <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M306','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M306">View MathML</a>. Let <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M307','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M307">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M308','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M308">View MathML</a>, and then <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M309','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M309">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M310','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M310">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M311','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M311">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M312','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M312">View MathML</a>.

All the conditions (F1)-(F3) of Corollary 4.3 are satisfied, then by Corollary 4.3 the null solution of impulsive deterministic system (1.3) is globally stochastically exponentially stable in the mean square with the convergence rate 0.0049 and the allowable upper bound of time delays <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M308','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M308">View MathML</a>.

Example 5.2 Under the Neumann boundary condition, we consider stochastic system (1.2) with the data (4.1) and the following parameters:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M314','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M314">View MathML</a>

Let <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M315','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M315">View MathML</a>, and then <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M316','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M316">View MathML</a>. Now, one can use Matlab LMI toolbox to solve the LMI condition of [[2], Theorem 2.1] and obtain <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M317','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M317">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M318','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M318">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M319','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M319">View MathML</a>. Further computation yields that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M320','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M320">View MathML</a>, which implies that the condition (C2) of [[2], Theorem 2.1] is not satisfied. Hence, the stability of system (1.2) with the above data cannot be judged by [[2], Theorem 2.1].

However, we solve LMIs (4.3)-(4.4), and obtain <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M321','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M321">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M322','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M322">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M323','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M323">View MathML</a>. Moreover, we can get by direct computation that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M324','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M324">View MathML</a>, and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M325','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M325">View MathML</a>. Let <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M326','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M326">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M327','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M327">View MathML</a> so that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M328','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M328">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M329','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M329">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M330','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M330">View MathML</a>. All (E1)-(E3) of Corollary 4.2 are satisfied, then by Corollary 4.2 the null solution of impulsive stochastic system (1.2) is globally stochastically exponentially stable in the mean square with the convergence rate 0.0027 and the allowable upper bound of time delays <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M326','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M326">View MathML</a>.

Example 5.3 Consider impulsive stochastic Markovian jumping fuzzy system (1.1) with the following parameters:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M332','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M332">View MathML</a>

In addition, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M333','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M333">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M334','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M334">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M335','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M335">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M336','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M336">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M337','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M337">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M338','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M338">View MathML</a>.

The two cases of the transition rates matrices are considered as follows:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M339','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M339">View MathML</a>

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M290','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M290">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M291','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M291">View MathML</a>. Assume that the boundary condition is the Dirichlet boundary one, and then <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M292','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M292">View MathML</a>. Assume that the lower limit of the time interval between pulses <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M293','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M293">View MathML</a>. From the differential inequality lemma (see, [17] or [[2], Lemma 1.3]), we know that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M294','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M294">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M131','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M131">View MathML</a>, and hence the upper limit of time delay <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M296','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M296">View MathML</a> (see, Remark 5.1).

Now one can use Matlab LMI toolbox to solve the LMI conditions (3.1)-(3.2) of Theorem 3.1 for Case (1) and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M3">View MathML</a>, and obtain <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M348','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M348">View MathML</a>, and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M349','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M349">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M350','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M350">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M351','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M351">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M352','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M352">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M353','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M353">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M354','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M354">View MathML</a>.

Moreover, a direct computation derives <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M355','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M355">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M356','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M356">View MathML</a>. So, the condition (C2) <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M128','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M128">View MathML</a> holds in this case.

By the definition of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M358','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M358">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M359','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M359">View MathML</a>, further computation derives <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M360','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M360">View MathML</a>. Let <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M361','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M361">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M362','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M362">View MathML</a>. Then solving the equation <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M140','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M140">View MathML</a> yields <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M364','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M364">View MathML</a>. By these data, one can calculate that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M365','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M365">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M366','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M366">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M367','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M367">View MathML</a>, which implies the condition (C3) of Theorem 3.1 holds. By Theorem 3.1, the null solution of impulsive Markovian jumping stochastic fuzzy system (1.1) is globally stochastically exponentially stable in the mean square with the convergence rate 0.00185 and the allowable upper bounds of time delays <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M361','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M361">View MathML</a>.

Assume that the boundary condition is the Dirichlet boundary one, and then <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M292','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M292">View MathML</a> (see, e.g., [16]). Similarly, we can solve the corresponding conditions of Theorem 3.2 for Case (1) and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M167','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M167">View MathML</a>, and obtain <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M371','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M371">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M372','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M372">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M373','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M373">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M374','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M374">View MathML</a>, and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M375','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M375">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M376','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M376">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M377','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M377">View MathML</a>.

Similarly, we can calculate and obtain <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M378','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M378">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M379','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M379">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M380','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M380">View MathML</a>.

Let <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M381','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M381">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M382','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M382">View MathML</a>, and then <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M383','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M383">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M384','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M384">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M385','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M385">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M386','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M386">View MathML</a>. By Theorem 3.2, the null solution of impulsive Markovian jumping stochastic fuzzy system (1.1) with <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M167','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M167">View MathML</a> is stochastically exponentially stable in the mean square with the convergence rate 0.00145 and the allowable upper bounds of time delays <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M382','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M382">View MathML</a>.

Obviously in Case (2) we can assume <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M389','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M389">View MathML</a>. Next, we employ Matlab LMI toolbox to solve LMI conditions (3.1)-(3.2) of Theorem 3.1 for Case (2) and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M3">View MathML</a>, and obtain <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M391','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M391">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M392','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M392">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M393','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M393">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M394','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M394">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M395','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M395">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M396','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M396">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M397','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M397">View MathML</a>. So, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M398','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M398">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M356','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M356">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M400','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M400">View MathML</a>.

Let <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M401','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M401">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M402','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M402">View MathML</a>, and then <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M403','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M403">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M404','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M404">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M405','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M405">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M406','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M406">View MathML</a>. By Theorem 3.1, the null solution of impulsive Markovian jumping stochastic fuzzy system (1.1) is stochastically exponentially stable in the mean square with the convergence rate 0.00565 and the allowable upper bounds of time delays <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M407','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M407">View MathML</a>.

Similarly, we can solve the corresponding conditions of Theorem 3.2 for Case (1) and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M167','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M167">View MathML</a>, and obtain <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M409','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M409">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M410','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M410">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M411','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M411">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M412','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M412">View MathML</a>, and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M413','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M413">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M414','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M414">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M415','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M415">View MathML</a>, and then <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M416','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M416">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M417','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M417">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M418','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M418">View MathML</a>. Let <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M419','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M419">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M420','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M420">View MathML</a>, and then <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M421','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M421">View MathML</a>.

Further computation yields <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M404','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M404">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M423','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M423">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M424','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M424">View MathML</a>. By Theorem 3.2, the null solution of impulsive Markovian jumping stochastic fuzzy system (1.1) with <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M167','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M167">View MathML</a> is stochastically exponentially stable in the mean square with the convergence rate 0.0048 and the allowable upper bounds of time delays <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M420','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M420">View MathML</a>.

Table 1 shows that the upper bounds of time delay decrease when there exist unknown elements of a transition rates matrix. This means that unknown elements of transition rates bring a great difficulty in judging the stability.

Table 1. Allowable upper bounds of time delays and the convergence rate

In some related literature [18,19], their impulsive assumption is <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M429','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M429">View MathML</a>. However, our impulse matrix <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M430','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M430">View MathML</a> may not satisfy the assumption of decreasing impulse. In all the above numerical examples, impulsive parameters matrices <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M430','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M430">View MathML</a> satisfy <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M432','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M432">View MathML</a> so that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M433','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M433">View MathML</a>. Thereby, the increasing impulse not only brings some unstable factors to CGNNs, but also limits the time-delays’ upper limit <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M434','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M434">View MathML</a> (see [17] or [[2], Lemma 1.6]).

Remark 5.1 The parameters of impulsive deterministic system (1.3) do not satisfy the conditions of [[3], Theorem 3.1] so that we are not sure whether system (1.3) is stable, for the conditions of [[3], Theorem 3.1] are only sufficient ones, not necessary for the stability of system (1.3). However, we can conclude the stability by our Corollary 4.3, which implies that Corollary 4.3 allows for more effectiveness and less conservatism than [[3], Theorem 3.1]. By the same token as in Remark 5.2, Corollary 4.2 is better than [[2], Theorem 2.1].

Remark 5.2 Table 1 shows that the diffusion plays a positive role in the criterion of Theorem 3.2, which admits a wider range of time delays. Table 1 also illustrates the effectiveness and less conservatism of Theorems 3.1-3.2 due to the significant improvement in the allowable upper bounds of time delays.

Remark 5.3 Finding a solution x to the LMI system <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M435','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M435">View MathML</a> is called the feasibility problem. So, in Examples 5.1-5.3, the system is feasible if <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M436','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M436">View MathML</a>, and infeasible if <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M437','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/133/mathml/M437">View MathML</a> (see [[11], Remark 29(3)] for detail).

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors typed, read and approved the final manuscript.

Acknowledgements

The authors would like to thank the referees for their valuable suggestions. This work was supported by the Scientific Research Fund of Science Technology Department of Sichuan Province (2012JY010), and the Scientific Research Fund of Sichuan Provincial Education Department (12ZB349).

References

  1. Rao, R, Zhong, S, Wang, X: Stochastic stability criteria with LMI conditions for Markovian jumping impulsive BAM neural networks with mode-dependent time-varying delays and nonlinear reaction-diffusion. Commun. Nonlinear Sci. Numer. Simul. (accepted on May 18, 2013)

  2. Wang, X, Rao, R, Zhong, S: LMI approach to stability analysis of Cohen-Grossberg neural networks with p-Laplace diffusion. J. Appl. Math.. 2012, Article ID 523812 (2012)

  3. Zhang, X, Wu, S, Li, K: Delay-dependent exponential stability for impulsive Cohen-Grossberg neural networks with time-varying delays and reaction-diffusion terms. Commun. Nonlinear Sci. Numer. Simul.. 16, 1524–1532 (2011). Publisher Full Text OpenURL

  4. Zhu, Q, Li, X: Exponential and almost sure exponential stability of stochastic fuzzy delayed Cohen-Grossberg neural networks. Fuzzy Sets Syst.. 203, 74–94 (2012)

  5. Li, D, He, D, Xu, D: Mean square exponential stability of impulsive stochastic reaction-diffusion Cohen-Grossberg neural networks with delays. Math. Comput. Simul.. 82(8), 1531–1543 (2012). Publisher Full Text OpenURL

  6. Li, B, Xu, D: Existence and exponential stability of periodic solution for impulsive Cohen-Grossberg neural networks with time-varying delays. Appl. Math. Comput.. 219(5), 2506–2520 (2012). Publisher Full Text OpenURL

  7. Long, S, Xu, D: Stability analysis of stochastic fuzzy cellular neural networks with time-varying delays. Neurocomputing. 74(14-15), 2385–2391 (2011). Publisher Full Text OpenURL

  8. Li, B, Xu, D: Mean square asymptotic behavior of stochastic neural networks with infinitely distributed delays. Neurocomputing. 72(13-15), 3311–3317 (2009). Publisher Full Text OpenURL

  9. Tian, J, Li, Y, Zhao, J, Zhong, S: Delay-dependent stochastic stability criteria for Markovian jumping neural networks with mode-dependent time-varying delays and partially known transition rates. Appl. Math. Comput.. 218(9), 5769–5781 (2012). Publisher Full Text OpenURL

  10. Ding, Y, Zhu, H, Zhong, S, Zeng, Y: Exponential mean-square stability of time-delay singular systems with Markovian switching and nonlinear perturbations. Appl. Math. Comput.. 219(4), 2350–2359 (2012). Publisher Full Text OpenURL

  11. Rao, R, Wang, X, Zhong, S, Pu, Z: LMI approach to exponential stability and almost sure exponential stability for stochastic fuzzy Markovian-jumping Cohen-Grossberg neural networks with nonlinear p-Laplace diffusion. J. Appl. Math.. 2013, Article ID 396903 (2013)

  12. Cheng, J, Zhu, H, Zhong, S, Li, G: Novel delay-dependent robust stability criteria for neutral systems with mixed time-varying delays and nonlinear perturbations. Appl. Math. Comput.. 219(14), 7741–7753 (2013). Publisher Full Text OpenURL

  13. Zhao, H, Zhang, Q: Global impulsive exponential anti-synchronization of delayed chaotic neural networks. Neurocomputing. 74(4), 563–567 (2011). Publisher Full Text OpenURL

  14. Zhao, H, Mao, Z: Boundedness and stability of nonautonomous cellular neural networks with reaction-diffusion terms. Math. Comput. Simul.. 79(5), 1603–1617 (2009). Publisher Full Text OpenURL

  15. Zhu, Q, Li, X, Yang, X: Exponential stability for stochastic reaction-diffusion BAM neural networks with time-varying and distributed delays. Appl. Math. Comput.. 217(13), 6078–6091 (2011). Publisher Full Text OpenURL

  16. Pan, J, Zhong, S: Dynamic analysis of stochastic reaction-diffusion Cohen-Grossberg neural networks with delays. Adv. Differ. Equ.. 2009, Article ID 410823 (2009)

  17. Yue, D, Xu, S, Liu, Y: Differential inequality with delay and impulse and its applications to design robust control. Control Theory Appl.. 16(4), 519–524 (1999)

  18. Rakkiyappan, R, Balasubramaniam, P: Dynamic analysis of Markovian jumping impulsive stochastic Cohen-Grossberg neural networks with discrete interval and distributed time-varying delays. Nonlinear Anal. Hybrid Syst.. 3(4), 408–417 (2009). Publisher Full Text OpenURL

  19. Dong, M, Zhang, H, Wang, Y: Dynamics analysis of impulsive stochastic Cohen-Grossberg neural networks with Markovian jumping and mixed time delays. Neurocomputing. 72(7-9), 1999–2004 (2009). Publisher Full Text OpenURL