Skip to main content

Harnack inequality for parabolic Lichnerowicz equations on complete noncompact Riemannian manifolds

Abstract

In this paper, we study the gradient estimates for positive solutions to the following parabolic Lichnerowicz equations

∂ u ∂ t =△u+hu(x,t)+A u p (x,t)+B u − q (x,t)

on complete noncompact Riemannian manifolds, where h, p, q, A, B are real constants and p>1, q>0.

MSC:58J05, 58J35.

1 Introduction

Let M be an n-dimensional complete noncompact Riemannian manifold. In this paper, we study the following nonlinear parabolic equation

u t (x,t)=△u(x,t)+hu(x,t)+A u p (x,t)+B u − q (x,t),
(1.1)

where h, p, q, A, B are real constants and p>1, q>0.

Gradient estimates play an important role in the study of PDE, especially the Laplace equation and heat equation. Li [1] derived the gradient estimates and Harnack inequalities for positive solutions of nonlinear equations (△− ∂ ∂ t )u(x,t)+h(x,t) u α (x,t)=0 and Au+b∇u+h u α =0 on Riemannian manifolds. The author in [1] also obtained a theorem of Liouville-type for positive solutions of the nonlinear elliptic equation. Later, Yang [2] gave the gradient estimates for the solution to the elliptic equation with singular nonlinearity

△u+c u − α =0,
(1.2)

where α>0, c are two real constants. More precisely, the author [2] obtained the following result.

Theorem 1.1 (Yang [2])

Let M be a noncompact complete Riemannian manifold of dimension n without boundary. Let B p (2R) be a geodesic ball of radius 2R around p∈M. We denote −K(2R), with K(2R)≥0, to be a lower bound of the Ricci curvature on B p (2R), i.e., Ric(ξ,ξ)≥−K(2R) | ξ | 2 for all tangent field ξ on B p (2R). Suppose that u(x) is a positive smooth solution of the equation (1.2) with α>0, c being two real constants. Then we have:

  1. (i)

    If c>0, then u(x) satisfies the estimate

    | ∇ u | 2 u 2 +c u − ( α + 1 ) ≤ n ( 2 n + 1 ) ϵ 2 R 2 + n ( n − 1 ) ϵ 2 R K ( 2 R ) + n ν R 2 +2nK(2R)

on B p (R), where ϵ>0 and ν>0 are some universal constants independent of geometry of M.

  1. (ii)

    If c<0, then u(x) satisfies the estimate

    | ∇ u | 2 u 2 + c u − ( α + 1 ) ≤ ( n ( α + 1 ) ( α + 2 ) + n ( α + 1 ) ) | c | ( inf B p ( 2 R ) u ) − α − 1 + n ν R 2 + ( 2 n + n α + 1 ) K ( 2 R ) + n ϵ 2 R 2 ( 2 n + 1 ) + n 2 ( α + 1 ) + ( n − 1 ) K ( 2 R ) R

on B p (R), where ϵ>0 and ν>0 are some universal constants independent of geometry of M.

For some interesting gradient estimates in this direction, we can refer to [3–7].

Recently, Song and Zhao [8] studied a generalized elliptic Lichnerowicz equation

â–³u(x)+h(x)u(x)=A(x) u p (x)+ B ( x ) u q ( x )
(1.3)

on compact manifold (M,g). The authors in [8] got the local gradient estimate for the positive solutions of (1.3). Moreover, they considered the following parabolic Lichnerowicz equation

u t (x,t)+△u(x,t)+h(x)u(x,t)=A(x) u p (x,t)+B(x) u − q (x,t)
(1.4)

on manifold (M,g) and obtained the Harnack differential inequality.

Theorem 1.2 (Song and Zhao [8])

Let M be a compact Riemannian manifold without boundary, Ric(M)≥0. Let c(t)∈ C 1 (0,∞). Assume that u(x,t) is any positive solution of (1.4) on M with A(x)≡A, B(x)≡B, and h(x)≡h. Denote φ=lnu, suppose that A≤0, B≥0, c(t)≥0, c ′ (t)≥0. If | ∇ φ | 2 − 1 p φ t + 1 p H ˜ −c(t)≤0 with H ˜ =A e ( p − 1 ) φ + B e ( q + 1 ) φ −h at t=0, then we have

| ∇ φ | 2 − 1 p φ t + 1 p H ˜ −c(t)≤0.

While the author considered the gradient estimates on compact Riemannian manifolds in Theorem 1.2, it is natural to study this problem on complete noncompact manifolds. Motivated by the work above, we present our main results as follows.

Theorem 1.3 Let (M,g) be a complete noncompact n-dimensional Riemannian manifold with Ricci tensor bounded from below by the constant −K=:−K(2R), where R>0 and K(2R)>0 in the metric ball B 2 R (p) around p∈M. Assume that u is a positive solution of (1.1) with u≤ M 1 for all (x,t)∈ B R (p)×(0,+∞). Then

  1. (1)

    if A≤0, B≥0, we have

    β | ∇ u | 2 u 2 + h + A u p − 1 + B u − ( q + 1 ) − u t u ≤ n 2 ( 1 − δ ) β ( n c 1 2 4 δ β ( 1 − β ) R 2 − M 1 p − 1 A ( p − 1 ) ( p − β ) 4 ( 1 − β ) 2 + H + 1 t ) ;
  2. (2)

    if A>0, B>0, we get

    β | ∇ u | 2 u 2 + h + A u p − 1 + B u − ( q + 1 ) − u t u ≤ n 2 ( 1 − δ ) β ( n c 1 2 4 δ β ( 1 − β ) R 2 + M 1 p − 1 A ( p − 1 ) + H + 1 t ) ,

where H= ( n − 1 ) ( 1 + K R ) c + c 2 + 2 c 1 2 R 2 , c, c 1 , c 2 , δ are positive constants with 0<δ<1 and β= e − 2 K t .

Let R→∞, we can get the following global gradient estimates for the nonlinear parabolic equation (1.1).

Corollary 1.4 Let (M,g) be a complete noncompact n-dimensional Riemannian manifold with Ricci tensor bounded from below by the constant −K=:−K(M), where K>0. Assume that u is a positive solution of (1.1) with u≤ M 1 for all (x,t)∈M×(0,+∞). Then

  1. (1)

    if A≤0, B≥0, we have

    β | ∇ u | 2 u 2 +h+A u p − 1 +B u − ( q + 1 ) − u t u ≤ n 2 ( 1 − δ ) β ( − M 1 p − 1 A ( p − 1 ) ( p − β ) 4 ( 1 − β ) 2 + 1 t ) ;
  2. (2)

    if A>0, B>0, we get

    β | ∇ u | 2 u 2 +h+A u p − 1 +B u − ( q + 1 ) − u t u ≤ n 2 ( 1 − δ ) β ( M 1 p − 1 A ( p − 1 ) + 1 t ) ,

δ are positive constants with 0<δ<1 and β= e − 2 K t .

Let δ→0, A=0 in Corollary 1.4, we get a Li-Yau-type gradient estimate.

Corollary 1.5 Let (M,g) be a complete noncompact n-dimensional Riemannian manifold with Ric(M)≥0. Assume that u(x,t) is a positive solution to the equation

∂ u ∂ t =△u+hu(x,t)+B u − q (x,t)

on complete noncompact manifolds, where h, q, B are real constants and q>0. Then we have

| ∇ u | 2 u 2 +h+B u − ( q + 1 ) − u t u ≤ n 2 t .
(1.5)

As an application, we have the following Harnack inequality.

Theorem 1.6 Let (M,g) be a complete noncompact n-dimensional Riemannian manifold with Ric(M)≥0. Assume that u(x,t) is a positive solution to the equation

∂ u ∂ t =△u+hu(x,t)+B u − q (x,t)

on complete noncompact manifolds, where h, q, B are real constants and q>0, B>0. Then for any points ( x 1 , t 1 ) and ( x 2 , t 2 ) on M×[0,+∞) with 0< t 1 < t 2 , we have the following Harnack inequality:

u( x 1 , t 1 )≤u( x 2 , t 2 ) ( t 2 t 1 ) n 2 e ϕ ( x 1 , x 2 , t 1 , t 2 ) + D ,

where ϕ( x 1 , x 2 , t 1 , t 2 )= d 2 ( x 1 , x 2 ) t 2 − t 1 , D=h( t 1 − t 2 ).

2 Proof of Theorem 1.3

Assume that u is a positive solution to (1.1). Set w=lnu, then w satisfies the equation

w t =△w+ | ∇ w | 2 +h+A e ( p − 1 ) w +B e − w ( q + 1 ) .
(2.1)

Lemma 2.1 Let (M,g) be a complete noncompact n-dimensional Riemannian manifold with Ricci curvature bounded from below by the constant −K=:−K(2R), where R>0 and K>0 in the metric ball B 2 R (p) around p∈M. Let w be a positive solution of (2.1), then

( △ − ∂ ∂ t ) F ≥ − 2 ∇ w ⋅ ∇ F + t { 2 β n ( ( β − 1 ) | ∇ w | 2 − F t ) 2 + A ( p − β ) ( p − 1 ) e ( p − 1 ) w | ∇ w | 2 + B ( q + 1 ) ( q + β ) e − w ( q + 1 ) | ∇ w | 2 } + [ B ( q + 1 ) e − ( q + 1 ) w − A ( p − 1 ) e ( p − 1 ) w ] F − F t ,

where

F=t ( β | ∇ w | 2 + h + A e ( p − 1 ) w + B e − ( q + 1 ) w − w t ) ,

and β= e − 2 K t .

Proof Define

F=t ( β | ∇ w | 2 + h + A e ( p − 1 ) w + B e − ( q + 1 ) w − w t ) ,

where β= e − 2 K t . By the Bochner formula, we have

△ | ∇ w | 2 ≥ 2 n | △ w | 2 +2∇w∇(△w)−2K | ∇ w | 2 .
(2.2)

By a direct computation, we have

△ w t = ( △ w ) t =−2∇w∇ w t −A(p−1) e ( p − 1 ) w w t +B(q+1) e − ( q + 1 ) w w t + w t t
(2.3)

and

△ w = − | ∇ w | 2 − h − A e ( p − 1 ) w − B e − ( q + 1 ) w + w t = ( 1 − 1 β ) ( − h − A e ( p − 1 ) w − B e − ( q + 1 ) w + w t ) − F β t = ( β − 1 ) | ∇ w | 2 − F t ,

and we know

△ F = t { β △ | ∇ w | 2 + A [ ( p − 1 ) 2 e ( p − 1 ) w | ∇ w | 2 + ( p − 1 ) e ( p − 1 ) w △ w ] + B [ ( q + 1 ) 2 e − ( q + 1 ) w | ∇ w | 2 − ( q + 1 ) e − ( q + 1 ) w △ w ] − △ w t } .

Therefore, by equalities (2.2) and (2.3), we obtain

β △ | ∇ w | 2 ≥ 2 β n ( ( β − 1 ) | ∇ w | 2 − F t ) 2 + 2 β ∇ w ∇ ( △ w ) − 2 β K | ∇ w | 2 = 2 β n ( ( β − 1 ) | ∇ w | 2 − F t ) 2 + 2 β ∇ w ∇ [ ( 1 − 1 β ) ( − h − A e ( p − 1 ) w − B e − ( q + 1 ) w + w t ) − F β t ] − 2 β K | ∇ w | 2 = 2 β n ( ( β − 1 ) | ∇ w | 2 − F t ) 2 − 2 A ( β − 1 ) ( p − 1 ) e ( p − 1 ) w | ∇ w | 2 + 2 B ( β − 1 ) ( q + 1 ) e − ( q + 1 ) w | ∇ w | 2 + 2 ( β − 1 ) ∇ w ∇ w t − 2 t ∇ w ∇ F − 2 β K | ∇ w | 2 .

This implies that,

△ F ≥ t { 2 β n ( ( β − 1 ) | ∇ w | 2 − F t ) 2 − 2 A ( β − 1 ) ( p − 1 ) e ( p − 1 ) w | ∇ w | 2 + 2 B ( β − 1 ) ( q + 1 ) e − ( q + 1 ) w | ∇ w | 2 + 2 ( β − 1 ) ∇ w ∇ w t − 2 t ∇ w ∇ F − 2 β K | ∇ w | 2 + A ( p − 1 ) 2 e ( p − 1 ) w | ∇ w | 2 + A ( p − 1 ) e ( p − 1 ) w [ ( β − 1 ) | ∇ w | 2 − F t ] + B ( q + 1 ) 2 e − ( q + 1 ) w | ∇ w | 2 − B ( q + 1 ) e − ( q + 1 ) w [ ( β − 1 ) | ∇ w | 2 − F t ] + 2 ∇ w ∇ w t + A ( p − 1 ) e ( p − 1 ) w w t − B ( q + 1 ) e − ( q + 1 ) w w t − w t t }

and

F t = F t +t ( 2 β ∇ w ∇ w t + A ( p − 1 ) e ( p − 1 ) w w t − B ( q + 1 ) e − ( q + 1 ) w w t − w t t − 2 K β | ∇ w | 2 ) .

Therefore, it follows that

( △ − ∂ ∂ t ) F ≥ − 2 ∇ w ⋅ ∇ F + t { 2 β n ( ( β − 1 ) | ∇ w | 2 − F t ) 2 + A ( p − β ) ( p − 1 ) e ( p − 1 ) w | ∇ w | 2 + B ( q + 1 ) ( q + β ) e − w ( q + 1 ) | ∇ w | 2 } + [ B ( q + 1 ) e − ( q + 1 ) w − A ( p − 1 ) e ( p − 1 ) w ] F − F t ,

which completes the proof of Lemma 2.1. □

We take a C 2 cut-off function φ ˜ defined on [0,∞) such that φ ˜ (r)=1 for r∈[0,1], φ ˜ (r)=0 for r∈[2,∞), and 0≤ φ ˜ (r)≤1. Furthermore, φ ˜ satisfies

φ ˜ ′ ( r ) φ ˜ 1 2 ( r ) ≥− c 1

and

φ ˜ ″ (r)≥− c 2

for some absolute constants c 1 , c 2 >0. Denote by r(x) the distance between x and p in M. Set

φ(x)= φ ˜ ( r ( x ) R ) .

Using an argument of Cheng and Yau [9], we can assume that φ(x)∈ C 2 (M) with support in B p (2R). Direct calculation shows that on B p (2R)

| ∇ φ | 2 φ ≤ c 1 2 R 2 .
(2.4)

By the Laplacian comparison theorem in [10],

△φ≥− ( n − 1 ) ( 1 + K R ) c 1 2 + c 2 R 2 ( c 1 ≥1).
(2.5)

In inequality (2.5), if c 1 <1, then △φ can be controlled by − ( n − 1 ) ( 1 + K R ) c 1 + c 2 R 2 , so in any case, △φ≥− ( n − 1 ) ( 1 + K R ) c + c 2 R 2 , where c is some positive constant.

For T≥0, let (x,s) be a point in B 2 R (p)×[0,T], at which φF attains its maximum value P, and we assume that P is positive (otherwise the proof is trivial). At the point (x,s), we have

∇(φF)=0,△(φF)≤0, F t ≥0.

It follows that

φ△F+F△φ−2F φ − 1 | ∇ φ | 2 ≤0.

This inequality, together with inequalities (2.4) and (2.5), yields

φ△F≤HF,

where

H= ( ( n − 1 ) ( 1 + K R ) ) c + c 2 + 2 c 1 2 R 2 .

At (x,s), by Lemma 2.1, we have

φ △ F ≥ − 2 φ ∇ w ∇ F + s φ { 2 β n ( ( β − 1 ) | ∇ w | 2 − F s ) 2 + A ( p − β ) ( p − 1 ) e ( p − 1 ) w | ∇ w | 2 + B ( q + 1 ) ( q + β ) e − w ( q + 1 ) | ∇ w | 2 } + φ [ B ( q + 1 ) e − ( q + 1 ) w − A ( p − 1 ) e ( p − 1 ) w ] F − φ F s ,

it follows that

2 s φ β n ( ( β − 1 ) | ∇ w | 2 − F s ) 2 ≤ 2 c 1 R φ 1 2 F | ∇ w | + H F − A ( p − β ) ( p − 1 ) e ( p − 1 ) w | ∇ w | 2 s φ − B ( q + 1 ) ( q + β ) e − w ( q + 1 ) | ∇ w | 2 s φ − [ B ( q + 1 ) e − ( q + 1 ) w − A ( p − 1 ) e ( p − 1 ) w ] φ F + φ F s ,

here we used

−2φ∇w∇F=2F∇w∇φ≥−2F|∇w||∇φ|≥− 2 c 1 R φ 1 2 F|∇w|.

Following Davies [11] (see also Negrin [12]), we set

μ= | ∇ w | 2 F .

Then we have

2 φ β ( ( β − 1 ) s μ − 1 ) 2 F 2 n s ≤ 2 c 1 R φ 1 2 μ 1 2 F 3 2 + H F − A ( p − β ) ( p − 1 ) e ( p − 1 ) w s φ μ F − B ( q + 1 ) ( q + β ) e − w ( q + 1 ) s μ φ F − [ B ( q + 1 ) e − ( q + 1 ) w − A ( p − 1 ) e ( p − 1 ) w ] φ F + φ F s .

Next, we consider the following two cases:

  1. (1)

    if A≤0, B≥0, then we have

    2 φ β ( ( β − 1 ) s μ − 1 ) 2 F 2 n s ≤ 2 c 1 R φ 1 2 μ 1 2 F 3 2 +HF− M 1 p − 1 A(p−1)(p−β)μsφF+ φ F s ,

multiplying both sides of the inequality above by sφ, we have

2 β ( ( β − 1 ) s μ − 1 ) 2 n ( φ F ) 2 ≤ 2 c 1 R s μ 1 2 ( φ F ) 3 2 + H s φ F − M 1 p − 1 A ( p − 1 ) ( p − β ) μ s 2 φ F + φ F ≤ 2 δ β ( ( β − 1 ) s μ − 1 ) 2 n ( φ F ) 2 + n c 1 2 s 2 μ 2 δ β ( ( β − 1 ) s μ − 1 ) 2 R 2 φ F + H s φ F − M 1 p − 1 A ( p − 1 ) ( p − β ) μ s 2 φ F + φ F .

So, it follows that

P ≤ n 2 ( 1 − δ ) β ( ( β − 1 ) s μ − 1 ) 2 × ( n c 1 2 s 2 μ 2 δ β ( ( β − 1 ) s μ − 1 ) 2 R 2 − M 1 p − 1 A ( p − 1 ) ( p − β ) μ s 2 2 ( 1 − β ) + H s + 1 ) .

Since

( ( β − 1 ) s μ − 1 ) 2 ≥2(1−β)sμ+1≥2(1−β)sμ,

we get

P≤ n 2 ( 1 − δ ) β ( n c 1 2 s 4 δ β ( 1 − β ) R 2 − M 1 p − 1 A ( p − 1 ) ( p − β ) s 4 ( 1 − β ) 2 + H s + 1 ) .

Now, (1) of Theorem 1.3 can be easily deduced from the inequality above;

  1. (2)

    if A>0, B>0, then we have

    2 φ β ( ( β − 1 ) s μ − 1 ) 2 F 2 n s ≤ 2 c 1 R φ 1 2 μ 1 2 F 3 2 + M 1 p − 1 A(p−1)φF+HF+ φ F s ,

multiplying both sides of the inequality above by sφ, we have

2 β ( ( β − 1 ) s μ − 1 ) 2 n ( φ F ) 2 ≤ 2 c 1 R s μ 1 2 ( φ F ) 3 2 + M 1 p − 1 A ( p − 1 ) φ F s + H s φ F + φ F ≤ 2 δ β ( ( β − 1 ) s μ − 1 ) 2 n ( φ F ) 2 + n c 1 2 s 2 μ 2 δ β ( ( β − 1 ) s μ − 1 ) 2 R 2 φ F + M 1 p − 1 A ( p − 1 ) φ F s + H s φ F + φ F .

So, it follows that

P≤ n 2 ( 1 − δ ) β ( n c 1 2 s 4 δ β ( 1 − β ) R 2 + M 1 p − 1 A ( p − 1 ) s + H s + 1 ) .

Similarly, we can obtain (2) of Theorem 1.3.

Proof of Theorem 1.6 For any points ( x 1 , t 1 ) and ( x 2 , t 2 ) on M×[0,+∞) with 0< t 1 < t 2 , we take a curve γ(t) parameterized with γ( t 1 )= x 1 and γ( t 2 )= x 2 . One gets from Corollary 1.5 that

log u ( x 2 , t 2 ) − log u ( x 1 , t 1 ) = ∫ t 1 t 2 ( ( log u ) t + 〈 ∇ log u , γ ˙ 〉 ) d t ≥ ∫ t 1 t 2 ( | ∇ log u | 2 − n 2 t + h + B u − ( q + 1 ) − | ∇ log u | | γ ˙ | ) d t ≥ − ∫ t 1 t 2 ( 1 4 | γ ˙ | 2 + n 2 t − h ) d t = − ( ∫ t 1 t 2 1 4 | γ ˙ | 2 d t + log ( t 2 t 1 ) n 2 + h ( t 1 − t 2 ) ) ,

which means that

log u ( x 1 , t 1 ) u ( x 2 , t 2 ) ≤ ∫ t 1 t 2 1 4 | γ ˙ | 2 dt+log ( t 2 t 1 ) n 2 +h( t 1 − t 2 ).

Therefore,

u( x 1 , t 1 )≤u( x 2 , t 2 ) ( t 2 t 1 ) n 2 e ϕ ( x 1 , x 2 , t 1 , t 2 ) + D ,

where ϕ( x 1 , x 2 , t 1 , t 2 )= d 2 ( x 1 , x 2 ) t 2 − t 1 , D=h( t 1 − t 2 ). □

References

  1. Li JY: Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifolds. J. Funct. Anal. 1991, 100: 233-256. 10.1016/0022-1236(91)90110-Q

    Article  MathSciNet  MATH  Google Scholar 

  2. Yang YY:Gradient estimates for the equation △u+c u − α =0 on Riemannian manifolds. Acta Math. Sin. 2010, 26: 1177-1182. 10.1007/s10114-010-7531-y

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen L, Chen WY: Gradient estimates for positive smooth f -harmonic functions. Acta Math. Sci., Ser. B 2010, 30: 1614-1618.

    Article  MathSciNet  MATH  Google Scholar 

  4. Huang, GY, Li, HZ: Gradient estimates and entropy formulae of porous medium and fast diffusion equations for the Witten Laplacian. arXiv:1203.5482v1 [math.DG] (2012).

    MATH  Google Scholar 

  5. Li XD: Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds. J. Math. Pures Appl. 2005, 84: 1295-1361.

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhang J, Ma BQ:Gradient estimates for a nonlinear equation △ f u+c u − α =0 on complete noncompact manifolds. Commun. Math. 2011, 19: 73-84.

    MathSciNet  Google Scholar 

  7. Zhu XB: Hamilton’s gradient estimates and Liouville theorems for fast diffusion equations on noncompact Riemannian manifolds. Proc. Am. Math. Soc. 2011, 139: 1637-1644. 10.1090/S0002-9939-2010-10824-9

    Article  MATH  Google Scholar 

  8. Song XF, Zhao L: Gradient estimates for the elliptic and parabolic Lichnerowicz equations on compact manifolds. Z. Angew. Math. Phys. 2010, 61: 655-662. 10.1007/s00033-009-0047-6

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng SY, Yau ST: Differential equations on Riemannian manifolds and their geometric applications. Commun. Pure Appl. Math. 1975, 28: 333-354. 10.1002/cpa.3160280303

    Article  MathSciNet  MATH  Google Scholar 

  10. Aubin T: Nonlinear Analysis on Manifolds. Springer, New York; 1982.

    MATH  Google Scholar 

  11. Davies EB: Heat Kernels and Spectral Theory. Cambridge University Press, Cambridge; 1989.

    Book  MATH  Google Scholar 

  12. Negrin ER: Gradient estimates and a Liouville type theorem for the Schrödinger operator. J. Funct. Anal. 1995, 127: 198-203. 10.1006/jfan.1995.1008

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the editor and the anonymous referees for their valuable comments and helpful suggestions that improved the quality of the paper. Moreover, the author would like to thank his supervisor Professor Kefeng Liu for his constant encouragement and help. This work is supported by the Postdoctoral Science Foundation of China (2013M531342) and the Fundamental Research Funds for the Central Universities (NS2012065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhao.

Additional information

Competing interests

The author declares that they have no competing interests.

Author’s contributions

The author completed the paper. The author read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Zhao, L. Harnack inequality for parabolic Lichnerowicz equations on complete noncompact Riemannian manifolds. Bound Value Probl 2013, 190 (2013). https://doi.org/10.1186/1687-2770-2013-190

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-2770-2013-190

Keywords