This article is part of the series Recent Trends on Boundary Value Problems and Related Topics.

Open Access Research

MHD boundary layer flow due to a moving wedge in a parallel stream with the induced magnetic field

Khamisah Jafar1*, Roslinda Nazar2, Anuar Ishak2 and Ioan Pop3

Author Affiliations

1 Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor, 43600, Malaysia

2 School of Mathematical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor, 43600, Malaysia

3 Department of Mathematics, Babeş-Bolyai University, Cluj-Napoca, 400084, Romania

For all author emails, please log on.

Boundary Value Problems 2013, 2013:20  doi:10.1186/1687-2770-2013-20


The electronic version of this article is the complete one and can be found online at: http://www.boundaryvalueproblems.com/content/2013/1/20


Received:30 September 2012
Accepted:14 January 2013
Published:11 February 2013

© 2013 Jafar et al.; licensee Springer

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The present analysis considers the steady magnetohydrodynamic (MHD) laminar boundary layer flow of an incompressible electrically conducting fluid caused by a continuous moving wedge in a parallel free stream with a variable induced magnetic field parallel to the wedge walls outside the boundary layer. Using a similarity transformation, the governing system of partial differential equations is first transformed into a system of ordinary differential equations in the form of a two-point boundary value problem (BVP) and then solved numerically using a finite difference scheme known as the Keller box method. Numerical results are obtained for the velocity profiles and the skin friction coefficient for various values of the moving parameter λ, the wedge parameter β, the reciprocal magnetic Prandtl number α and the magnetic parameter S. Results indicate that when the wedge and the fluid move in the opposite directions, multiple solutions exist up to a critical value <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M1">View MathML</a> of the moving parameter λ, whose value depends on the values of S and β.

MSC: 34B15, 76D10.

Keywords:
boundary layer; magnetohydrodynamic; induced magnetic field; moving wedge

1 Introduction

Magnetohydrodynamics (MHD) is a subject that studies the behavior of an electrically conducting fluid in the presence of an electromagnetic field with applications in many different fields of engineering as well as geophysics, astrophysics, manufacturing, etc. The subject of MHD has been applied, for example, in problems associated with the confinement of plasma by magnetic fields and in projects involving thermonuclear generation of energy. In recent years it has been widely used in metallurgy industries involving sheet-like materials such as production of paper, polymer sheets and wire drawing and in horizontal continuous casting of hollow billets. For examples of these applications, see Li et al.[1] and Yan et al.[2]. Historically, the study of the hydrodynamic behavior of the boundary layer on a semi-infinite flat plate in the presence of a uniform transverse magnetic field has been first considered by Rossow [3]. Since then, the study of MHD flow and heat transfer fields past moving surfaces has drawn considerable attention with variations in types of geometrical surfaces and types of fluids.

The steady laminar flow of a viscous and incompressible fluid passing a fixed wedge was first analyzed in the early 1930s by Falkner and Skan [4] to illustrate the application of Prandtl’s boundary layer theory, in which a similarity transformation was used to reduce the boundary layer equations to an ordinary differential equation known as the Falkner-Skan equation. The Falkner-Skan equation also represents the boundary layer flow with stream-wise pressure gradient. The general cases with <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M2','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M2">View MathML</a> were numerically studied by Fang [5] and Weidman et al.[6] independently. There are many references on the solutions of Falkner-Skan equations; for example, see Hartree [7], Hastings [8], Brodie and Banks [9], Pantokratoras [10], Alizadeh et al.[11], Yao [12], and Abbasbandy and Hayat [13]. Similarity solutions for pressure gradient driven flow over a stretching boundary were analyzed by Riley and Weidman [14] for the case of external velocity and boundary velocity being proportional to the same powers of the downstream coordinate. Very interesting and extensive results were reported demonstrating a rich variety of solutions available, including the existence of multiple solutions, and an exact solution was also presented for <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M3">View MathML</a>. Fang and Zhang [15] studied a special case of the Falkner-Skan equation with <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M3">View MathML</a> in the presence of wall suction and injection. An exact solution was presented for the boundary conditions with both wall mass transfer and wall movement, with different solution behavior identified in different solution regions. On the other hand, Ishak et al.[16] considered the steady MHD boundary layer flow in a conducting fluid flowing transverse to a variable magnetic field along a moving wedge in a free stream. The results reported were consistent with those found by Riley and Weidman [14] and with earlier studies by the same authors Ishak et al.[17,18]. More recent studies on similar problems were done by Van Gorder and Vajravelu [19], Postelnicu and Pop [20] and Parand et al.[21].

The present work aims to study the boundary layer flow over a moving wedge in a parallel free stream of an electrically conducting fluid with the induced magnetic field. It considers an extension of the results reported by Riley and Weidman [14] and Ishak et al.[16] on the flow characteristics of a moving wedge in a parallel free stream. Both studies reported the existence of multiple solutions when the fluid and the wedge move in the opposite directions within a specific range of moving parameter λ and a critical value <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M1">View MathML</a> beyond which the solution is non-existent. The present study considers the corresponding MHD flow of the paper by Ishak et al.[16], but with the induced magnetic field, and investigates how this magnetic field affects the flow and the critical value <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M1">View MathML</a>. The induced magnetic field is assumed to be applied parallel to the wedge walls at the outer edge of the boundary layer. Such an induced magnetic field has been also considered by Davies [22], Apelblat [23,24], Kumari et al.[25], Takhar et al.[26] and more recently by Kumari and Nath [27]. To obtain the solutions, the governing partial differential equations are first transformed into ordinary differential equations using a similarity transformation. The ordinary differential equations obtained are then solved numerically by a very efficient finite difference scheme known as the Keller box method for some values of the selected parameters. The effect of the induced magnetic field on the flow field for different values of the wedge parameter β is included in the analysis. Particular cases of the present results are compared with those reported by Riley and Weidman [14] and Ishak et al.[16,17].

2 Basic equations

Consider the steady laminar flow of an incompressible electrically conducting fluid caused by a continuous moving wedge in a parallel free stream with a variable induced magnetic field applied parallel to the wedge walls outside the boundary layer (inviscid flow). Following Apelblat [24] or Cowling [28], the basic equations for the flow of a viscous, electrically conducting, incompressible fluid can be written in a vectorial form as follows:

(1)

(2)

(3)

where V is the fluid velocity vector, H is the induced magnetic field vector, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M10','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M10">View MathML</a> is the magneto-hydrodynamic pressure, p is the fluid pressure, μ, ν, σ, ρ and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M11','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M11">View MathML</a> denote the magnetic permeability, kinematic viscosity, electric conductivity, fluid density and magnetic diffusivity, respectively. We take the Cartesian coordinates x measured along the surface of the wedge and y normal to it, respectively. If <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M12','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M12">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M13">View MathML</a> are the velocity and magnetic components in <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M14','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M14">View MathML</a> directions, respectively, subject to the boundary layer approximations, equations (1)-(3) for the problem under consideration can be reduced to

(4)

(5)

(6)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M18','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M18">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M19','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M19">View MathML</a> are the x-velocity and magnetic field at the edge of the boundary layer, respectively. We assume here that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M20','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M20">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M21','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M21">View MathML</a>, where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M22','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M22">View MathML</a> is the constant velocity at the outer edge of the boundary layer and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M23','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M23">View MathML</a> is the value of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M24','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M24">View MathML</a> at <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M25','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M25">View MathML</a>. Further, m is also a constant, which varies in the range <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M26','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M26">View MathML</a>.

We will take the boundary conditions of equations (4)-(6) to be

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M27','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M27">View MathML</a>

(7)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M28','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M28">View MathML</a> is a positive or a negative constant. By applying the similarity variables

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M29','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M29">View MathML</a>

(8)

equations (4)-(6) can be reduced to the following system of nonlinear ordinary differential equations:

(9)

(10)

subject to the boundary conditions (7) which are now transformed to

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M32','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M32">View MathML</a>

(11)

where primes denote differentiation with respect to η. Further, λ is the moving parameter, α is the reciprocal magnetic Prandtl number, β is the wedge parameter and S, the ratio of the magnetic to dynamic pressure, is the magnetic parameter. These parameters are defined as

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M33','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M33">View MathML</a>

(12)

We notice that different values of β characterize a number of main-stream flows. For <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M34','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M34">View MathML</a>, equations (9) and (10) are reduced to the MHD Blasius problem. The values <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M35','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M35">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M36','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M36">View MathML</a> are equivalent to the flow past a wedge placed symmetrically in a stream. For MHD boundary layers, we take the values of the parameters S and α to be in the range <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M37','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M37">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M38">View MathML</a>; see Davies [22] and Kumari et al.[25]. This is the same range of magnetic parameter adopted by Takhar et al.[26] and several earlier researchers investigating similar problems. It is also consistent with the existence of the steady-state solution of the ‘super Alfven’ flow.

The physical quantity of interest is the skin friction coefficient which is defined as

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M39','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M39">View MathML</a>

(13)

where the wall shear stress is given by <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M40','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M40">View MathML</a>. Using the similarity variables (8), we obtain

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M41','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M41">View MathML</a>

(14)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M42','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M42">View MathML</a> is the local Reynolds number.

We also notice that for <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M43','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M43">View MathML</a> the present problem corresponds to the MHD boundary layer flow over a static wedge, which has been considered by Apelblat [24], in which the MHD wedge problem was solved using the Laplace transform method to give an infinite series approximation solution for <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M45','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M45">View MathML</a>. On the other hand, it may be noted that for <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M46','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M46">View MathML</a> (without a magnetic field), equation (9) reduces to that of Ishak et al.[18]. Therefore, as <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M46','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M46">View MathML</a> implies the absence of a magnetic field, equation (10) governing the induced magnetic field is no longer necessary.

3 Results and discussion

Nonlinear ordinary differential equations (9) and (10) subject to the boundary conditions (11) form a two-point boundary value problem (BVP) and are solved numerically using the Keller box method as described in the book by Cebeci and Bradshaw [29]. In this method, the solution is obtained using the following four steps:

(i) Reduce equations (9) and (10) to a first-order system.

(ii) Write the difference equations using centered differences.

(iii) Linearize the resulting algebraic equations by Newton’s method and write them in the matrix-vector form.

(iv) Solve the linear systems by the block-tridiagonal-elimination technique.

The numerical method is then programmed using MATLAB R2010a software. To obtain a numerical solution, it is required to make an appropriate guess for the step size of η, Δη and the thickness of the boundary layer <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M48','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M48">View MathML</a> (typically a finite number between 4 to 10 is chosen). Beginning with some initial guess value of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M48','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M48">View MathML</a>, equations (9) and (10) subject to the boundary conditions (11) together with some particular set of parameters are solved to obtain the velocity profiles <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M50','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M50">View MathML</a> and the induced magnetic profiles <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M51','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M51">View MathML</a>. The solution process is repeated until further changes (increment) in <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M48','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M48">View MathML</a> do not lead to any changes in the values of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M53','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M53">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M54','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M54">View MathML</a> or, in other words, the results are independent of the value of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M48','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M48">View MathML</a>. The initial step size employed is <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M56','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M56">View MathML</a>. The skin friction coefficient <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44">View MathML</a>, the velocity profiles <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M50','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M50">View MathML</a>, the induced magnetic profiles <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M51','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M51">View MathML</a> and the rate of change of the induced magnetic field, which we will henceforth call the induced magnetic gradient, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M45','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M45">View MathML</a> are obtained for various values of the governing parameters, namely the moving parameter λ, the wedge parameter β and the magnetic parameter S. In order to assess the accuracy of the numerical method used, we have compared some of our results for the non-magnetic case (<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M46','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M46">View MathML</a>) with those obtained by Riley and Weidman [14], Rajagopal et al.[30], Ishak et al.[18] and Kuo [31]. Table 1 presents values of the skin friction coefficient <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44">View MathML</a> for <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M63','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M63">View MathML</a> and various values of the wedge parameter β for the non-magnetic case (<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M46','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M46">View MathML</a>). Table 2 compares the values of the skin friction <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44">View MathML</a> for the set of triple solutions computed when <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M66','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M66">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M67','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M67">View MathML</a> with those obtained by Riley and Weidman [14]. We observed that the results obtained for the present study are found to be in very good agreement with those obtained by earlier researchers. Therefore, the developed code can be used with confidence for the magnetic case (<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M68','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M68">View MathML</a>).

Table 1 . Values of<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44">View MathML</a>for<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M63','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M63">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M46','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M46">View MathML</a>and variousβ

Table 2 . Values of<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44">View MathML</a>for<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M73','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M73">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M74','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M74">View MathML</a>

Variations of the velocity profiles <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M50','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M50">View MathML</a> and the induced magnetic profiles <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M51','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M51">View MathML</a> with the moving parameter λ, the wedge parameter β, the magnetic parameter S and the reciprocal magnetic Prandtl number α are presented in Figures 1 to 4. All the sample profiles satisfy the far field boundary conditions (11) asymptotically, thus supporting the numerical results obtained. From these figures, we see that as the values of λ and β increase, both the fluid velocity <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M50','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M50">View MathML</a> and the induced magnetic field <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M51','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M51">View MathML</a> also increase while the velocity boundary layer thickness decreases. In contrast, as the values of S and α increase, the fluid velocity and the induced magnetic decrease while the velocity boundary layer thickness increases. We also notice that the effect of the reciprocal magnetic Prandtl number α is more pronounced on <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M51','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M51">View MathML</a> compared to <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M50','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M50">View MathML</a>.

thumbnail Figure 1 . Variation of velocity profiles<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M87','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M87">View MathML</a>and induced magnetic profiles<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M88','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M88">View MathML</a>with the moving parameterλ.

thumbnail Figure 2 . Variation of velocity profiles<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M87','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M87">View MathML</a>and induced magnetic profiles<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M88','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M88">View MathML</a>with the wedge parameterβ.

thumbnail Figure 3 . Variation of velocity profiles<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M87','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M87">View MathML</a>and induced magnetic profiles<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M88','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M88">View MathML</a>with the magnetic parameterS.

thumbnail Figure 4 . Variation of velocity profiles<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M87','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M87">View MathML</a>and induced magnetic profiles<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M88','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M88">View MathML</a>with the reciprocal magnetic Prandtl numberα.

Figure 5 presents the variation of the skin friction coefficient <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M95','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M95">View MathML</a> as a function of λ for various values of S when the wedge parameter and reciprocal magnetic Prandtl number are fixed at <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M96','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M96">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M97','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M97">View MathML</a>, respectively. It was found that for all values of the magnetic parameter S, with <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M98','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M98">View MathML</a>, the solution is unique for all values of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M99','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M99">View MathML</a>, where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M1">View MathML</a> is the minimum value of λ for which the solution exists. The critical value <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M101','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M101">View MathML</a> decreases as the value of S increases. In our calculation for the case <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M102','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M102">View MathML</a>, the solution stops to exist when the value of the induced magnetic gradient reaches <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M103','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M103">View MathML</a>. As is evident from Figure 5, the value of the skin friction coefficient <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44">View MathML</a> also decreases as the value of the magnetic parameter S increases. Furthermore, this decrease becomes more rapid for higher values of S.

thumbnail Figure 5 . Skin friction coefficient<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M105','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M105">View MathML</a>as a function ofλfor various values ofSwhen<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M106','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M106">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M107','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M107">View MathML</a>.

Figure 6 presents the variation of the skin friction coefficient <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M95','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M95">View MathML</a> and the induced magnetic gradient <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M45','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M45">View MathML</a> as a function of λ for various values of the magnetic parameter S when the wedge parameter is fixed at <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M110','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M110">View MathML</a>. The figure indicates that for all values of S (<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M98','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M98">View MathML</a>), the solution is unique for all values of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M112','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M112">View MathML</a>, while dual solutions exist for some range of values of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M113','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M113">View MathML</a>. Furthermore, the skin friction coefficient <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44">View MathML</a>, the induced magnetic gradient <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M45','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M45">View MathML</a> and the critical value <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M101','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M101">View MathML</a> decrease as the value of S increases. As evident from Table 3, the critical value <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M1">View MathML</a> for <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M2','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M2">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M35','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M35">View MathML</a> in the non-magnetic case (<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M46','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M46">View MathML</a>) that we computed in this study shows an excellent agreement with previously reported result by Klemp and Acrivos [32] and Hussaini et al.[33]. The case of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M34','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M34">View MathML</a> corresponds to the flat plate, while <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M35','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M35">View MathML</a> refers to the stagnation point flow.

thumbnail Figure 6 . Skin friction coefficient<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M105','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M105">View MathML</a>and induced magnetic gradient<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M124','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M124">View MathML</a>as a function ofλfor various values ofSwhen<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M125','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M125">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M107','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M107">View MathML</a>.

Table 3 . Values of<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M1">View MathML</a>for different values ofmwhen<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M46','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M46">View MathML</a>

Figure 7 shows the velocity profiles <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M129','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M129">View MathML</a> at the critical values of λ (<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M130','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M130">View MathML</a>), prior to separation, for various values of S when <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M110','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M110">View MathML</a>. We observe that as the value of S increases, the critical value <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M101','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M101">View MathML</a>, the induced magnetic gradient <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M45','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M45">View MathML</a> and the skin friction <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44">View MathML</a> decrease, thus supporting our previous observation from Figure 6. We also notice that the induced magnetic gradient <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M45','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M45">View MathML</a> varies almost linearly with the moving parameter λ, with most of the second solution having a very small value of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M136','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M136">View MathML</a>. Figure 8 shows velocity <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M129','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M129">View MathML</a> and induced magnetic field <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M138','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M138">View MathML</a> profiles supporting the existence of a dual solution when <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M110','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M110">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M140','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M140">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M141','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M141">View MathML</a>.

thumbnail Figure 7 . Velocity profiles at critical values<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M142','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M142">View MathML</a>for various values ofSwhen<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M125','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M125">View MathML</a>.

thumbnail Figure 8 . Velocity profile<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M87','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M87">View MathML</a>and induced magnetic profile<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M88','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M88">View MathML</a>for (a) the first and (b) the second branch of solutions when<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M125','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M125">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M147','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M147">View MathML</a>and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M148','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M148">View MathML</a>.

Figure 9 illustrates the variation of the skin friction coefficient <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44">View MathML</a> and the induced magnetic gradient <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M45','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M45">View MathML</a> as a function of λ for various values of the magnetic parameter S when the wedge parameter is fixed at <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M151','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M151">View MathML</a>. The figure indicates that for all values of S (<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M98','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M98">View MathML</a>), the solution is unique for all values of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M112','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M112">View MathML</a>, while triple solutions exist for some range of values of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M113','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M113">View MathML</a>. Similar to the previous considered cases, the skin friction coefficient <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44">View MathML</a>, the induced magnetic gradient <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M45','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M45">View MathML</a> and the critical value <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M101','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M101">View MathML</a> also decrease as the value of S increases. Here, we also found that for the second and third solutions, the values of the induced magnetic gradient are also usually very small <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M158','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M158">View MathML</a>.

thumbnail Figure 9 . Skin friction coefficient<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M105','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M105">View MathML</a>and induced magnetic gradient<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M124','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M124">View MathML</a>as a function ofλfor various values ofSwhen<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M161','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M161">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M107','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M107">View MathML</a>.

Figure 10 presents the variation of the skin friction coefficient <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M163','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M163">View MathML</a> as a function of λ for various values of the wedge parameter β when the magnetic parameter is fixed at <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M164','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M164">View MathML</a>. Here the value of the reciprocal magnetic Prandtl number is also fixed at <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M97','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M97">View MathML</a>. The result exhibits similar characteristics as those obtained in the non-magnetic case (<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M46','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M46">View MathML</a>) reported by Riley and Weidman [14]. We can see that the value of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44">View MathML</a> increases as β increases, and there is a critical value <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M1">View MathML</a> of the moving parameter beyond which the similarity solutions do not exist. The magnitude of the critical value <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M101','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M101">View MathML</a> also increases as the wedge parameter β increases. Figure 7 also indicates a rich variety of solutions depending on the value of the wedge parameter β. Following Riley and Weidman [14] for the non-magnetic case (<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M46','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M46">View MathML</a>), we draw particular attention to the following interesting features of the solution set in the presence of the magnetic field with <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M164','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M164">View MathML</a>. For <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M172','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M172">View MathML</a>, there is a unique solution for <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M112','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M112">View MathML</a> and dual solutions for some range of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M174','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M174">View MathML</a>; for <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M175','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M175">View MathML</a>, the solution is unique for all <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M99','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M99">View MathML</a>; for <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M177','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M177">View MathML</a>, triple solutions are available for some range of values of the parameter λ. To be more specific, our computation shows that for <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M151','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M151">View MathML</a>, a unique solution has been found for the range <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M179','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M179">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M180','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M180">View MathML</a>, while triple solutions have been found for the range <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M181','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M181">View MathML</a>. This result is qualitatively consistent with the result reported by Riley and Weidman [13], where triple solutions were found for <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M182','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M182">View MathML</a>, a unique solution for all λ when <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M183','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M183">View MathML</a> and dual solutions for some range of λ when <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M184','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M184">View MathML</a>. We mention here that Riley and Weidman [14] reported that for the non-magnetic case (<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M46','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M46">View MathML</a>), all solution curves for <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M186','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M186">View MathML</a> have the point <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M187','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M187">View MathML</a> as a limit point. In the present study, our computation shows that the solution curves terminate near the point <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M188','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M188">View MathML</a>, as it is evident from Figure 7. Riley and Weidman [14] explained the significance of this limit point in terms of the ‘edge’ <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M189','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M189">View MathML</a> of the boundary layer. Further, the value of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M189','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M189">View MathML</a> increases as <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44">View MathML</a> decreases, until the limit point is approached, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M192','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M192">View MathML</a>. We expect this limit point to move further right if the value of the parameter S is increased. Figures 11, 12, 13 present samples of velocity profiles and induced magnetic profiles supporting the existence of triple solutions for <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M34','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M34">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M151','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M151">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M195','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M195">View MathML</a>, respectively.

thumbnail Figure 10 . Skin friction coefficient<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M105','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M105">View MathML</a>as a function ofλfor various values ofβwhen<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M147','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M147">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M107','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M107">View MathML</a>.

thumbnail Figure 11 . (a) Velocity profiles<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M87','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M87">View MathML</a>and (b) induced magnetic profiles<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M88','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M88">View MathML</a>showing the existence of triple solutions when<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M201','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M201">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M147','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M147">View MathML</a>and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M203','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M203">View MathML</a>.

thumbnail Figure 12 . (a) Velocity profiles<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M87','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M87">View MathML</a>and (b) induced magnetic profiles<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M88','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M88">View MathML</a>showing the existence of triple solutions when<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M161','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M161">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M207','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M207">View MathML</a>and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M208','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M208">View MathML</a>.

thumbnail Figure 13 . (a) Velocity profiles<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M87','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M87">View MathML</a>and (b) induced magnetic profiles<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M88','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M88">View MathML</a>showing the existence of triple solutions when<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M211','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M211">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M147','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M147">View MathML</a>and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M213','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M213">View MathML</a>.

Figure 14 shows the variation of the induced magnetic gradient <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M214','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M214">View MathML</a> as a function of the moving parameter λ with the wedge parameter β. We observe that the induced magnetic gradient <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M214','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M214">View MathML</a> increases as the wedge parameter β increases for smaller values of λ but varies very little with β for larger values of λ.

thumbnail Figure 14 . Induced magnetic gradient<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M124','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M124">View MathML</a>as a function ofλfor various values ofβwhen<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M147','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M147">View MathML</a>,<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M107','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M107">View MathML</a>.

Following the convention adopted by earlier researchers, we define the first two upper branches of solutions as those for which <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44">View MathML</a> is greater for a given value of β, while the third branch is that with the smallest value of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44">View MathML</a>. We notice that the velocity profiles <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M50','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M50">View MathML</a> for the first two upper branches of solutions exhibit the same monotonic behavior. The boundary layer for the first branch is usually very thin and the velocity profile <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M129','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M129">View MathML</a> rapidly attains the value <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M223','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M223">View MathML</a>. In general, the third branch of solutions usually involves a much larger boundary layer thickness compared to the other two branches. It is usually characterized by starting off with a rather small value of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M224','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M224">View MathML</a>, with a non-monotonic behavior in the development of the velocity profiles <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M129','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M129">View MathML</a>, before assuming its final asymptotic value <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M226','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M226">View MathML</a>. Similar non-monotonic behavior was reported by Riley and Weidman [14] when they considered the velocity profiles <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M129','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M129">View MathML</a> of the upper branch solution for <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M228','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M228">View MathML</a>. Following Ishak et al.[16], we postulate that the upper branch of solutions with the highest value of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M44">View MathML</a> (first solutions) are physically stable and occur in practice since it is the only solution for <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M230','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M230">View MathML</a>, i.e., when the fluid and the solid surface move in the same direction.

A reduction in the skin friction <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M53','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M53">View MathML</a> implies a reduction in the drag force. Thus, the magnetic field reduces the drag force and speeds up the separation. On the other hand, increasing the included angle of the wedge will increase the drag force, hence delaying the separation. This result is consistent with that reported by Ishak et al.[18].

According to the Lorenz law, the induced magnetic field will oppose the change in the original magnetic field rather than the field itself. If, for example, the original field is decreasing, then the induced magnetic field must be in the same direction as the original field to oppose the decrease. From Figures 6 and 9, we see that the induced magnetic gradient <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M45','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M45">View MathML</a> increases monotonically with the increasing value of λ. This increase is supposedly opposing a decrease in the original magnetic field. Furthermore, the induced magnetic gradient also decreases with the increase in S, which is consistent with the Lorenz law. We also notice that the effect of both S and β is more pronounced on the skin friction <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M53','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M53">View MathML</a> compared to the induced magnetic gradient <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M45','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M45">View MathML</a>.

4 Conclusions

In this paper, we have considered similarity solutions for the steady MHD boundary layer flow due to a continuous moving wedge in a parallel free stream with the induced magnetic field. We investigated the effects of the moving parameter λ, the ratio of magnetic to dynamic pressure S, the wedge parameter β and the reciprocal magnetic Prandtl number α on the flow field and the induced magnetic field characteristics. It has been found that increasing the values of the moving parameter λ and the wedge parameter β speeds up the fluid flow. In contrast, increasing the ratio of magnetic to dynamic pressure S and the reciprocal magnetic Prandtl number α slows down the fluid flow. Furthermore, the skin friction or the surface shear stress <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M53','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M53">View MathML</a> and the induced magnetic gradient <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M54','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M54">View MathML</a> decrease with the increase of the ratio of magnetic to dynamic pressure S, but increase with the wedge parameter β. We have also demonstrated the existence of a rich variety of solutions by varying the value of the wedge parameter β. We have also found that when the wedge and the fluid move in the same direction, the solution is unique for all values of the parameters β and S. However, when the wedge and the free stream move in the opposite directions, multiple solutions exist for some range of values of the moving parameter λ as soon as the value of the moving parameter is greater than a critical value <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M237','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M237">View MathML</a>. This critical value of λ is dependent on both parameters β and S. It has been found that increasing the wedge parameter β will increase the value of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M101','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/20/mathml/M101">View MathML</a>, while increasing the ratio of magnetic to dynamic pressure S will reduce it. Thus, increasing the ratio of magnetic to dynamic pressure speeds up the boundary layer separation, while increasing the wedge parameter β delays it.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The paper is the result of joint work of all authors who contributed equally to the final version of the paper. All authors read and approved the final manuscript.

Acknowledgements

The authors gratefully acknowledge the financial support received in the form of a FRGS research grant from the Ministry of Higher Education, Malaysia, and DIP-2012-31 from the Universiti Kebangsaan, Malaysia. They also wish to express their sincere thanks to the reviewers for the valuable comments and suggestions.

References

  1. Li, X, Guo, Z, Zhou, X, Wei, B, Chen, F, Ting, B: Continuous casting of copper tube billets under rotating electromagnetic field . Mater. Sci. Eng.. 460-461, 648–651 (2007)

  2. Yan, Z, Li, X, Qi, ZC, Zhang, X, Li, T: Study on horizontal electromagnetic continuous casting of CuNi10Fe1Mn alloy hollow billets . Mater. Des.. 30, 2072–2076 (2009). Publisher Full Text OpenURL

  3. Rossow, VJ: On flow of electrically conducting fluid over a flat plate in the presence of a magnetic field. NACA TR. 1358 (1958)

  4. Falkner, VM, Skan, SW: Some approximate solutions of the boundary-layer equations . Philos. Mag.. 12, 865–896 (1931)

  5. Fang, T: Further study on a moving-wall boundary-layer problem with mass transfer . Acta Mech.. 163, 183–188 (2003). Publisher Full Text OpenURL

  6. Weidman, PD, Kubitschek, DG, Davis, AMJ: The effect of transpiration on self-similar boundary layer flow over moving surfaces . Int. J. Eng. Sci.. 44, 730–737 (2006). Publisher Full Text OpenURL

  7. Hartree, DR: On an equation occurring in Falkner and Skan’s approximate treatment of the equations of the boundary layer . Proc. Camb. Philos. Soc.. 33, 223–239 (1937). Publisher Full Text OpenURL

  8. Hastings, SP: Reversed flow solutions of the Falkner-Skan equation . SIAM J. Appl. Math.. 22, 329–334 (1972). Publisher Full Text OpenURL

  9. Brodie, P, Banks, WHH: Further properties of the Falkner-Skan equation . Acta Mech.. 65, 205–211 (1986)

  10. Pantokratoras, A: The Falkner-Skan flow with constant wall temperature and variable viscosity . Int. J. Therm. Sci.. 45, 378–389 (2006). Publisher Full Text OpenURL

  11. Alizadeh, E, Farhadi, M, Sedeghi, K, Ebrahim-Kerbia, HR, Ghoafourian, A: Solution of the Falkner-Skan equation for wedge by Adomian decomposition method . Commun. Nonlinear Sci. Numer. Simul.. 14, 724–733 (2009). Publisher Full Text OpenURL

  12. Yao, B: Approximate analytical solution to the Falkner-Skan wedge flow with the permeable wall of uniform suction . Commun. Nonlinear Sci. Numer. Simul.. 14, 3320–3326 (2009). Publisher Full Text OpenURL

  13. Abbasbandy, S, Hayat, T: Solution of the MHD Falkner-Skan flow by homotopy analysis method . Commun. Nonlinear Sci. Numer. Simul.. 14, 3591–3598 (2009). Publisher Full Text OpenURL

  14. Riley, N, Weidman, PD: Multiple solutions of the Falkner-Skan equation for flow past a stretching boundary . SIAM J. Appl. Math.. 49, 1350–1358 (1989). Publisher Full Text OpenURL

  15. Fang, T, Zhang, J: An exact analytical solution of the Falkner-Skan equation with mass transfer and wall stretching . Int. J. Non-Linear Mech.. 43, 1000–1006 (2008). Publisher Full Text OpenURL

  16. Ishak, A, Nazar, R, Pop, I: MHD boundary layer flow past a moving wedge . Magnetohydrodynamics. 45, 3–10 (2009)

  17. Ishak, A, Nazar, R, Pop, I: Moving wedge and flat plate in a micropolar fluid . Int. J. Eng. Sci.. 44, 1225–1236 (2006). Publisher Full Text OpenURL

  18. Ishak, A, Nazar, R, Pop, I: Falkner-Skan equation for flow past a moving wedge with suction or injection . J. Appl. Math. Comput.. 25, 67–83 (2007). Publisher Full Text OpenURL

  19. Van Gorder, RA, Vajravelu, K: Existence and uniqueness results for a nonlinear differential equation arising in MHD Falkner-Skan flow . Commun. Nonlinear Sci. Numer. Simul.. 15, 2272–2277 (2010). Publisher Full Text OpenURL

  20. Postelnicu, A, Pop, I: Falkner-Skan boundary layer flow of a power-law fluid past a stretching wedge . Appl. Math. Comput.. 217, 4359–4368 (2011). Publisher Full Text OpenURL

  21. Parand, K, Rezaei, AR, Ghaderi, SM: A approximate solution of the MHD Falkner-Skan flow by Hermite functions pseudospectral method . Commun. Nonlinear Sci. Numer. Simul.. 16, 274–283 (2011). Publisher Full Text OpenURL

  22. Davies, TV: The magneto-hydrodynamic boundary layer in the two-dimensional steady flow past a semi-infinite flat plate I. Uniform conditions at infinity . Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci.. 273, 496–508 (1963). Publisher Full Text OpenURL

  23. Apelblat, A: Application of the Laplace transformation to the solution of the boundary layer equations. II magneto-hydrodynamic Blasius problem . J. Phys. Soc. Jpn.. 25, 888–891 (1968). Publisher Full Text OpenURL

  24. Apelblat, A: Applications of the Laplace transform to the solution of the boundary layer equations. III magnetohydrodynamic Falkner-Skan problem . J. Phys. Soc. Jpn.. 27, 235–239 (1969). Publisher Full Text OpenURL

  25. Kumari, M, Takhar, HS, Nath, G: MHD flow and heat transfer over a stretching surface with prescribed wall temperature or heat flux . Wärme-Stoffübertrag.. 25, 331–336 (1990). PubMed Abstract OpenURL

  26. Takhar, HS, Chamka, AJ, Nath, G: Unsteady flow and heat transfer on a semi-infinite flat plate with aligned magnetic field . Int. J. Eng. Sci.. 37, 1723–1736 (1999). Publisher Full Text OpenURL

  27. Kumari, M, Nath, G: Steady mixed convection stagnation-point flow of upper convected Maxwell fluids with magnetic field . Int. J. Non-Linear Mech.. 44, 1048–1055 (2009). Publisher Full Text OpenURL

  28. Cowling, TG: Magnetohydrodynamics, Interscience, New York (1957)

  29. Cebeci, T, Bradshaw, P: Physical and Computational Aspects of Convective Heat Transfer, Springer, New York (1988)

  30. Rajagopal, KR, Gupta, AS, Nath, TY: A note on the Falkner-Skan flows of a non-Newtonian fluid . Int. J. Non-Linear Mech.. 18, 313–320 (1983). Publisher Full Text OpenURL

  31. Kuo, BL: Application of the differential transformation method to the solutions of Falkner-Skan wedge flow . Acta Mech.. 164, 161–174 (2003). Publisher Full Text OpenURL

  32. Klemp, JB, Acrivos, AA: A method for integrating the boundary-layer equations through a region of reverse flow . J. Fluid Mech.. 53, 177–199 (1972). Publisher Full Text OpenURL

  33. Hussaini, MY, Lakin, WD, Nachman, A: On similarity solutions for laminar boundary layer problem with an upstream moving wall . SIAM J. Appl. Math.. 47, 699–709 (1987). Publisher Full Text OpenURL