Abstract
In this paper, we consider the existence of solutions for nonlinear impulsive differential equations with Dirichlet boundary conditions. Infinitely many solutions are obtained by using a version of the symmetric mountainpass theorem, and this sequence of solutions converge to zero. Some recent results are extended.
MSC: 34B37, 35B38.
Keywords:
impulsive effects; variational methods; Dirichlet boundary value problem; critical points1 Introduction
In this paper, we study the following nonlinear impulsive differential equations with Dirichlet boundary conditions
where , , , is continuous, , N is a positive integer, , , are continuous. With the help of the symmetric mountainpass lemma due to Kajikiya [1], we prove that there are infinitely many small weak solutions for equations (1.1) with the general nonlinearities .
In recent years, a great deal of works have been done in the study of the existence of solutions for impulsive boundary value problems, by which a number of chemotherapy, population dynamics, optimal control, ecology, industrial robotics and physics phenomena are described. For the general aspects of impulsive differential equations, we refer the reader to the classical monograph [2]. For some general and recent works on the theory of impulsive differential equations, we refer the reader to [313]. Some classical tools or techniques have been used to study such problems in the literature. These classical techniques include the coincidence degree theory [14], the method of upper and lower solutions with a monotone iterative technique [15], and some fixed point theorems in cones [16,17].
On the other hand, in the last few years, many authors have used a variational method to study the existence and multiplicity of solutions for boundary value problems without impulsive effects [1821]. For related basic information, we refer the reader to [22,23].
For a second order differential equation , one usually considers impulses in the position u and the velocity . However, in the motion of spacecraft, one has to consider instantaneous impulses depending on the position that result in jump discontinuities in velocity, but with no change in the position [2427].
A new approach via critical point and variational methods is proved to be very effective in studying the boundary problem for differential equations. For some general and recent works on the theory of critical point theory and variational methods, we refer the reader to [2837].
More precisely, in [28] the authors studied the following equations with Dirichlet boundary conditions:
They obtained the existence of solutions for problems by using the variational method. Zhang and Yuan [30] extended the results in [28]. They obtained the existence of solutions for problem (1.2) with a perturbation term. Also, they obtained infinitely many solutions for problem (1.2) under the assumption that the nonlinearity f is a superlinear case. Soon after that, Zhou and Li [29] extended problem (1.2). In all the abovementioned works, the information on the sequence of solutions was not given.
Motivated by the fact above, the aim of this paper is to show the existence of infinitely many solutions for problem (1.1), and that there exists a sequence of infinitely many arbitrarily small solutions, converging to zero, by using a new version of the symmetric mountainpass lemma due to Kajikiya [1]. Our main results extend the existing study.
Throughout this paper, we assume that is continuous, and satisfies the following conditions:
(I_{1}) () are odd and satisfy
(I_{2}) There exist , such that
The main result of this paper is as follows.
Theorem 1.1Suppose that (I_{1})(I_{2}) and (H_{1})(H_{3}) hold. Then problem (1.1) has a sequence of nontrivial solutionsandas.
Remark 1.1 Without the symmetry condition (i.e., and ), we can obtain at least one nontrivial solution by the same method in this paper.
Remark 1.2 We should point out that Theorem 1.1 is different from the previous results of [2837] in three main directions:
(1) We do not make the nonlinearity f satisfy the wellknown AmbrosettiRabinowitz condition [23];
(2) We try to use LusternikSchnirelman’s theory for invariant functional. But since the functional is not bounded from below, we could not use the theory directly. So, we follow [38] to consider a truncated functional.
(3) We can obtain a sequence of nontrivial solutions and as .
Remark 1.3 There exist many functions and satisfying conditions (I_{1})(I_{2}) and (H_{1})(H_{3}), respectively. For example, when , and .
2 Preliminary lemmas
In this section, we first introduce some notations and some necessary definitions.
Definition 2.1 Let E be a Banach space and . J is said to be sequentially weakly lower semicontinuous if as in E.
Definition 2.2 Let E be a real Banach space. For any sequence , if is bounded and as possesses a convergent subsequence, then we say J satisfies the PalaisSmale condition (denoted by (PS) condition for short).
In the Sobolev space , consider the inner product
which induces the norm
It is a consequence of Poincaré’s inequality that
Here, is the first eigenvalue of the Dirichlet problem
In this paper, we will assume that . We can also define the inner product
which induces the equivalent norm
Lemma 2.1[29]
If, then the normand the normare equivalent.
Lemma 2.2[29]
There existssuch that if, then
For , we have that u and are both absolutely continuous, and , hence, for any . If , then u is absolutely continuous and . In this case, the oneside derivatives and may not exist. As a consequence, we need to introduce a different concept of solution. Suppose that satisfies the Dirichlet condition . Assume that, for every , and . Let .
Taking and multiplying the two sides of the equality
by v and integrating between 0 and T, we have
Combining (2.3), we get
Lemma 2.3A weak solution of (1.1) is a functionsuch that
where . Using the continuity of f and , , we obtain the continuity and differentiability of J and . For any , one has
Thus, the solutions of problem (1.1) are the corresponding critical points of J.
Lemma 2.4Ifis a weak solution of problem (1.1), thenuis a classical solution of problem (1.1).
Proof Obviously, we have since . By the definition of weak solution, for any , one has
For , choose with for every . Then
By the definition of weak derivative, the equality above implies that
Hence and u satisfies the equation in (1.1) a.e. on . By integrating (2.7), we have
Combining this fact with (2.8), we get
Hence, for every , and the impulsive condition in (1.1) is satisfied. This completes the proof. □
Lemma 2.5If, then the functionalJis sequentially weakly lower semicontinuous.
Proof Let be a weakly convergent sequence to u in , then
We have that converges uniformly to u on . Then
This completes the proof. □
Under assumptions (H_{1}) and (H_{2}), we have
which means that for all , there exist such that
Hence, for every positive constant k, we have
Lemma 2.6Suppose that (I_{1})(I_{2}) and (H_{1})(H_{3}) hold, thensatisfies the (PS) condition.
Proof Let be a sequence in such that is bounded and as . First, we prove that is bounded. By (2.5), (2.6) and (2.11), one has
By condition (I_{1}), we can deduce that
where and M is a positive constant. On the other hand, by (I_{1}), (2.5) and (2.10), we have
Thus, (2.12) and (2.13) imply that is bounded in . Going if necessary to a subsequence, we can assume that there exists such that
Therefore, as . That is converges strongly to u in . That is J satisfies the (PS) condition. □
3 Existence of a sequence of arbitrarily small solutions
In this section, we prove the existence of infinitely many solutions of (1.1), which tend to zero. Let X be a Banach space and denote
If there is no mapping φ as above for any , then . We list some properties of the genus (see [1]).
Proposition 3.1LetAandBbe closed symmetric subsets ofX, which do not contain the origin. Then the following hold.
(1) If there exists an odd continuous mapping fromAtoB, then;
(2) If there is an odd homeomorphism fromAtoB, then;
(4) Thenndimensional spherehas a genus ofby the BorsukUlam theorem;
(5) IfAis compact, thenand there existssuch thatand, where.
Let denote the family of closed symmetric subsets A of X such that and . The following version of the symmetric mountainpass lemma is due to Kajikiya [1].
Lemma 3.1LetEbe an infinitedimensional space and, and suppose the following conditions hold.
(C_{1}) is even, bounded from below, andsatisfies the PalaisSmale condition;
(C_{2}) For each, there exists ansuch that.
Then either (R_{1}) or (R_{2}) below holds.
(R_{1}) There exists a sequencesuch that, andconverges to zero;
(R_{2}) There exist two sequencesandsuch that, , , , , , , andconverges to a nonzero limit.
Remark 3.1 From Lemma 3.1, we have a sequence of critical points such that , and .
In order to get infinitely many solutions, we need some lemmas. Under the assumptions of Theorem 1.1, let , we have
where
Let . As attains a local but not a global minimum (P is not bounded below), we have to perform some sort of truncation. To this end, let , be such that , where m is the local minimum of , and M is the local maximum and . For these values and , we can choose a smooth function defined as follows
Then it is easy to see and is . Let and consider the perturbation of :
Then
From the arguments above, we have the following.
Lemma 3.2Letis defined as in (3.1). Then
(i) andGis even and bounded from below;
(ii) If, then, consequently, and;
(iii) Suppose that (I_{1})(I_{2}) and (H_{1})(H_{3}) hold, thensatisfies the (PS) condition.
Proof It is easy to see (i) and (ii). (iii) are consequences of (ii) and Lemma 2.6. □
Lemma 3.3Assume that (I_{2}) and (H_{3}) hold. Then for any, there existssuch that.
Proof Firstly, by (H_{3}) of Theorem 1.1, for any fixed , , we have
Secondly, from Lemma 5 of [33], we have that for any finite dimensional subspace of and any , there exists a constant such that
Therefore, for any with and ρ small enough, we have
This completes the proof. □
Now, we give the proof of Theorem 1.1 as following.
Proof of Theorem 1.1 Recall that
and define
By Lemma 3.2(i) and Lemma 3.3, we know that . Therefore, assumptions (C_{1}) and (C_{2}) of Lemma 3.1 are satisfied. This means that G has a sequence of solutions converging to zero. Hence, Theorem 1.1 follows by Lemma 3.2(ii). □
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
CZ carried out the theoretical studies, and participated in the sequence alignment and drafted the manuscript. FM participated in the design of the study and performed the statistical analysis. SL conceived of the study, and participated in its design and coordination. All authors read and approved the final manuscript.
Acknowledgements
The authors are supported by the Research Foundation during the 12th FiveYear Plan Period of Department of Education of Jilin Province, China (Grant [2013] No. 252), the China Postdoctoral Science Foundation (Grant No. 2012M520665), the Youth Foundation for Science and Technology Department of Jilin Province (20130522100JH), the open project program of Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University (Grant No. 93K172013K03), the Natural Science Foundation of Changchun Normal University.
References

Kajikiya, R: A criticalpoint theorem related to the symmetric mountainpass lemma and its applications to elliptic equations. J. Funct. Anal.. 225, 352–370 (2005)

Lakshmikantham, V, Bainov, DD, Simeonov, PS: Theory of Impulsive Differential Equations, World Scientific, Singapore (1989)

Agarwal, RP, Franco, D, O’Regan, D: Singular boundary value problems for first and second order impulsive differential equations. Aequ. Math.. 69, 83–96 (2005)

Nieto, JJ, RodriguezLopez, R: Boundary value problems for a class of impulsive functional equations. Comput. Math. Appl.. 55, 2715–2731 (2008)

Li, J, Nieto, JJ, Shen, J: Impulsive periodic boundary value problems of firstorder differential equations. J. Math. Anal. Appl.. 325, 226–299 (2007)

Nieto, JJ, RodriguezLopez, R: New comparison results for impulsive integrodifferential equations and applications. J. Math. Anal. Appl.. 328, 1343–1368 (2007)

Samoilenko, AM, Perestyuk, NA: Impulsive Differential Equations, World Scientific, Singapore (1995)

Zhang, H, Chen, L, Nieto, JJ: A delayed epidemic model with stage structure and pulses for management strategy. Nonlinear Anal., Real World Appl.. 9, 1714–1726 (2008)

Benchohra, M, Henderson, J, Ntouyas, SK: Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, New York (2006)

Zeng, G, Wang, F, Nieto, JJ: Complexity of a delayed predatorprey model with impulsive harvest and Hollingtype II functional response. Adv. Complex Syst.. 11, 77–97 (2008)

Cardinali, T, Servadei, R: Existence theorems for periodic semilinear impulsive problems (viable and not viable cases). Pure Math. Appl.. 14(3), 161–171 (2003)

Cardinali, T, Servadei, R: Periodic solutions of nonlinear impulsive differential inclusions with constraints. Proc. Am. Math. Soc.. 132(8), 2339–2349 (2004)

Cardinali, T, Servadei, R: On the existence of solutions for nonlinear impulsive periodic viable problems. Cent. Eur. J. Math.. 2(4), 573–583 (2004)

Qian, D, Li, X: Periodic solutions for ordinary differential equations with sublinear impulsive effects. J. Math. Anal. Appl.. 303, 288–303 (2005)

Chen, L, Sun, J: Nonlinear boundary value problem for first order impulsive functional differential equations. J. Math. Anal. Appl.. 318, 726–741 (2006)

Chen, L, Tisdel, CC, Yuan, R: On the solvability of periodic boundary value problems with impulse. J. Math. Anal. Appl.. 331, 233–244 (2007)

Chu, J, Nieto, JJ: Impulsive periodic solution of firstorder singular differential equations. Bull. Lond. Math. Soc.. 40, 143–150 (2008)

He, XM, Zou, WM: Infinitely many arbitrarily small solutions for singular elliptic problems with critical SobolevHardy exponents. Proc. Edinb. Math. Soc.. 52, 97–108 (2009)

Chen, J, Li, S: On multiple solutions of a singular quasilinear equation on unbounded domain. J. Math. Anal. Appl.. 275, 733–746 (2002)

Brézis, H, Nirenberg, L: Positive solutions of nonlinear elliptic equations involving critical exponents. Commun. Pure Appl. Math.. 34, 437–477 (1983)

Li, S, Zou, W: Remarks on a class of elliptic problems with critical exponents. Nonlinear Anal.. 32, 769–774 (1998)

Mawhin, J, Willem, M: Critical Point Theory and Hamiltonian Systems, Springer, Berlin (1989)

Rabinowitz, PH: Minimax Methods in Critical Point Theory with Applications to Differential Equations, Am. Math. Soc., Providence (1986)

Carter, TE: Optimal impulsive space trajectories based on linear equations. J. Optim. Theory Appl.. 70, 277–297 (1991)

Carter, TE: Necessary and sufficient conditions for optimal impulsive rendezvous with linear equations of motion. Dyn. Control. 10, 219–227 (2000)

Liu, X, Willms, AR: Impulsive controllability of linear dynamical systems with applications to maneuvers of spacecraft. Math. Probl. Eng.. 2, 277–299 (1996)

Prado, AFBA: Biimpulsive control to build a satellite constellation. Nonlinear Dyn. Syst. Theory. 5, 169–175 (2005)

Nieto, JJ, O’Regan, D: Variational approach to impulsive differential equations. Nonlinear Anal., Real World Appl.. 10, 680–690 (2009)

Zhou, J, Li, Y: Existence and multiplicity of solutions for some Dirichlet problems with impulse effects. Nonlinear Anal. TMA. 71, 2856–2865 (2009)

Zhang, Z, Yuan, R: An application of variational methods to Dirichlet boundary value problem with impulses. Nonlinear Anal., Real World Appl.. 11, 155–162 (2010)

Sun, J, Chen, H: Multiplicity of solutions for a class of impulsive differential equations with Dirichlet boundary conditions via variant fountain theorems. Nonlinear Anal., Real World Appl.. 11, 4062–4071 (2010)

Sun, J, Chen, H, Nieto, JJ, OteroNovoa, M: Multiplicity of solutions for perturbed secondorder Hamiltonian systems with impulsive effects. Nonlinear Anal. TMA. 72, 4575–4586 (2010)

Zhang, H, Li, Z: Variational approach to impulsive differential equations with periodic boundary conditions. Nonlinear Anal., Real World Appl.. 11, 67–78 (2010)

Tian, Y, Ge, W: Variational methods to SturmLiouville boundary value problem for impulsive differential equations. Nonlinear Anal. TMA. 72, 277–287 (2010)

Nieto, JJ: Variational formulation of a damped Dirichlet impulsive problem. Appl. Math. Lett.. 23, 940–942 (2010)

Li, WS, Chang, YK, Nieto, JJ: Solvability of impulsive neutral evolution differential inclusions with statedependent delay. Math. Comput. Model.. 49, 1920–1927 (2009)

Zhang, D, Bai, BX: Existence of solutions for nonlinear impulsive differential equations with Dirichlet boundary conditions. Math. Comput. Model.. 53, 1154–1161 (2011)

Garcia Azorero, J, Peral Alonso, I: Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans. Am. Math. Soc.. 323, 877–895 (1991)