Abstract
In this paper, by using the mountain pass theorem, we investigate the existence of subharmonic weak solutions for a class of secondorder impulsive Lagrangian systems with damped term under asymptotically quadratic conditions. Some new existence criteria are established. Finally, an example is presented to verify our results.
MSC: 37J45, 34C25, 70H05.
Keywords:
impulsive Lagrangian systems; damped term; subharmonic weak solutions; mountain pass theorem1 Introduction and main results
In this paper, we investigate the existence of subharmonic weak solutions for the following secondorder impulsive Lagrangian system with damped term:
where , , , , , satisfying and , B is a skewsymmetric constant matrix, and are symmetric and continuous matrixvalue functions on ℝ satisfying and , and satisfies , where K, W are Tperiodic in their first variable, and the following assumption:
(A) is measurable intfor everyand continuously differentiable inxfor a.e., and there existandwithsuch that
Lagrangian systems are applied extensively to study the fluid mechanics, nuclear physics and relativistic mechanics. Especially, as a special case of Lagrangian systems, the following secondorder Hamiltonian systems are considered by many authors:
where satisfies , and the existence and multiplicity of periodic solutions, subharmonic solutions and homoclinic solutions are obtained via variational methods. We refer readers to [114]. Especially, in 2010, under the asymptotically quadratic conditions, Tang and Jiang [10] obtained the following interesting result.
Theorem A (see [10], Theorem 1.1)
Assume thatFsatisfies
(F) andareTperiodic in their first variable with, and thatKandWsatisfy the following assumptions:
(H1) There exist constantsandsuch that
(H4) There exists a functionsuch that
and
(H5) There exist constantsandsuch that
Then system (1.2) has a nontrivialTperiodic solution.
In recent years, variational methods have been applied to study the existence and multiplicity of solutions for impulsive differential equations and lots of interesting results have been obtained, see [1520].
In [15], Nieto and O’Regan considered a onedimensional Dirichlet boundary value problem with impulses. They obtained that the solutions of the impulsive problem minimize some (energy) functional and the critical points of the functional are indeed solutions of the impulsive problem.
In [16], Nieto introduced a variational formulation for the following onedimensional damped nonlinear Dirichlet problem with impulses:
and gave the concept of a weak solution for such a problem. They obtained that the weak solutions of problem (1.3) are indeed the critical points of the functional:
where and . In [17] and [18], the authors also dealt with some onedimensional impulsive problems with damped term by variational methods.
For higher dimensional dynamical systems, some interesting results have also been obtained (see [2123]). In [21], Zhou and Li investigated the secondorder Hamiltonian system with impulsive effects:
By using the least action principle and the saddle point theorem, they obtained some existence results of solutions under sublinear condition and some reasonable conditions. In [22], system (1.5) with , where , was also investigated. By using variational methods, the authors obtained that system (1.5) has at least three weak solutions. In [23], the authors investigated system (1.5) with . They obtained that system (1.5) has infinitely many solutions under the assumptions that nonlinear term is superquadratic, asymptotically quadratic and subquadratic, respectively.
In recent years, via variational methods, some authors have been interested in studying the existence and multiplicity of periodic solutions and homoclinic solutions for the following Lagrangian systems with damped term:
where is a symmetric and continuous matrixvalued function, B is a skewsymmetric constant matrix and . They obtained some interesting results. We refer readers to [2427].
In 2010, Li et al.[28] investigated the following system, more general than system (1.6), with :
Motivated by [28], in [29], we investigated the following system, more general than system (1.7):
By variational methods, under superquadratic or subquadratic conditions, we obtained that system (1.8) has infinitely many solutions. One can see more details of our results and more research background of system (1.8) in [29].
In [32], Luo et al. investigated the existence of subharmonic solutions with prescribed minimal period for the following onedimensional secondorder impulsive differential equation:
where , , , , , and if , while if .
In this paper, motivated by [10,15,16,21,28,29] and [32], we focus on the existence of subharmonic weak solutions for system (1.1), which is of impulsive conditions, and we study the problem under asymptotically quadratic conditions. To the best of our knowledge, there are few papers that consider such a problem for system (1.1). We call a solution u subharmonic if u is kTperiodic for some .
Let
and
In this paper, we make the following assumptions:
(P) There exists a constant such that the matrix satisfies
(K1) There exist constants and such that
(W2) There exist constants and such that
(W3) There exists a function such that
and
(W5) There exists a constant such that
(I1) There exist constants () such that
(I3) There exists a constant C such that
This paper is organized as follows. In Section 2, we present the definition of a subharmonic classical solution, a subharmonic weak solution and the variational structure for system (1.1) and make some preliminaries. In Section 3, we present our main theorems and their proofs. In Section 4, an example is given to verify our main theorems.
2 Preliminaries
In this section, we present the variational structure of system (1.1), which is motivated by [1517,28] and [29].
Let
Define
and
for each . Then is a Hilbert space. It is well known that
is also a norm on . Obviously, if the condition (P) holds, and are equivalent. Moreover, there exists such that
(see Proposition 1.1 in [1]). Hence, there exist positive constants , such that
If , then may not hold, which leads to impulsive effects.
Definition 2.1 Assume that and the limits and () exist. If u satisfies system (1.1), then we say that u is a subharmonic classical solution of system (1.1).
Remark 2.1 In [32], impulsive effects may occur periodically in , . In order to obtain a sequence of distinct subharmonic weak solutions (see Theorem 3.2 below), different from [32], in Definition 2.1, we assume that the impulsive effects only occur in , , which belong to . In other words, u is absolutely continuous on ℝ and is absolutely continuous on . Moreover, note that . Then it is easy to see that .
Note that . Then, by Tperiodicity of q, we have . Moreover, obviously, is continuous on ℝ. We transform system (1.1) into the following system:
Then system (2.2) is equivalent to system (1.1) and its solutions are the solutions of system (1.1).
By the idea in [15], we take and multiply the two sides of the equality
by v and integrate it from 0 to kT. Then we obtain
Note that , is continuous on ℝ and . By integration by parts and the continuity of v, we obtain
Definition 2.2 is called a subharmonic weak solution of system (1.1) if
Lemma 2.1Ifis a subharmonic weak solution of system (1.1), thenuis a subharmonic classical solution of system (1.1).
Proof Motivated by [15], for , choose with for every . Then, by Definition 2.2, we obtain
Choose with for every . Then we obtain
Equations (2.5) and (2.6) imply that and u satisfies
Multiplying the above equality by v and integrating between 0 and kT, combining the argument of (2.4) and Definition 2.2, we obtain that
Hence, for every . This completes the proof. □
It follows from assumption (A) and Theorem 1.4 in [1] that the functional is continuously differentiable and
for . Obviously, if is a critical point of , i.e., , then is a subharmonic weak solution of system (1.1).
We will use the following mountain pass theorem to prove our results.
Lemma 2.2 (see [30])
LetEbe a real Banach space, and letsatisfy the (PS) condition. Ifϕsatisfies the following conditions:
(ii) There exist constantssuch that;
(iii) There existssuch that, thenϕpossesses a critical valuegiven by
whereis an open ball inEof radiusρcentered at 0, and
Remark 2.2 As shown in [31], a deformation lemma can be proved by replacing the usual (PS)condition with the condition (C), and it turns out that Lemma 2.2 holds true under the condition (C). We say that ϕ satisfies the condition (C), i.e., for every sequence , has a convergent subsequence if is bounded and as .
3 Main results
Theorem 3.1Assume that (P), (K1), (K2), (W1)(W4) and (I1)(I3) hold. Then, for every, system (1.1) has at least onekTperiodic weak solution in.
Proof We use Lemma 2.2 to prove the theorem. Let .
Step 1. We prove that satisfies assumption (ii) of Lemma 2.2. It follows from (W1) and (W2) that there exist , and such that
Choose such that . Then it follows from (K1), (I2), (3.1) and (2.1) that for all with ,
Step 2. We prove that satisfies assumption (iii) of Lemma 2.2. Set for . By the argument in [10], we know that (W3) implies that
and (K2) implies that
It follows from (3.2), (3.3), (W3) and (I1) that for sufficiently large s,
By (W4), we can choose sufficiently large such that and . Let . Then satisfies assumption (iii) of Lemma 2.2.
Step 3. We prove that φ satisfies the (C)condition on . The proof is motivated by [10]. For every , assume that there exists a constant such that
Then it follows from antisymmetry of B, (K2) and (I3) that
Next we prove that is bounded. Assume that as . Let . Then , and so there exists a subsequence, still denoted by , such that on . Then, by Proposition 1.2 in [1], we get . Hence, we have and for a.e. . Thus, by conditions (P), (W2) and (I2), we have
Hence, we have
Then it follows from and (3.6) that and so . Let and . Then and
Let . Then (3.7) and Tperiodicity of in t imply that
It follows from (3.8) and Lemma 1 in [6] that there exists a subset of with such that
By (W3), we have
Let . Then by Fatou’s lemma and (3.9), we have
which contradicts (3.5). Hence is bounded. Going if necessary to a subsequence, assume that in . Then, by Proposition 1.2 in [1], we have and so as . Similar to the argument of Theorem 3.1 in [28], it is easy to obtain that . Hence, as . Hence, satisfies the (C)condition.
Finally, (K1), (W1) and (I2) imply that . Hence, combining Step 1Step 3 with Lemma 2.2 and Remark 2.2, we obtain that has at least a critical point in and . Then system (1.1) has at least one kTperiodic solution in . This completes the proof. □
Remark 3.1 It is easy to see that Theorem 3.1 generalizes Theorem A. To be precise, when , , , , and , Theorem 3.1 reduces to Theorem A.
Theorem 3.2Assume (P), (K1)(K3), (W1)(W5) and (I1)(I3) hold. Then system (1.1) has a sequence of distinct subharmonic weak solutions with periodsatisfyingandas.
Proof By Theorem 3.1, we know that for every , system (1.1) has at least one kTperiodic solution in and . By Lemma 2.2, we have
where
Let , . Obviously, . Hence, by (K3), (W5) and (I1), we have
Hence, is uniformly bounded for all .
Obviously, we can find such that , then we claim that is distinct to for all . In fact, if for some , it is easy to check that
Then, by (3.10), we have , a contradiction. We can also find such that for all . Otherwise, if for some , we have . Then by (3.10), we have , a contradiction. In the same way, we can obtain that system (1.1) has a sequence of distinct periodic solutions with period satisfying and as . This completes the proof. □
4 Example
The following example is inspired partially by Example 3.1 in [10]. Let , . Consider the following impulsive Lagrangian system with damped term:
where
Obviously, the condition (P) holds and , and (K1), (K2), (W1) and (W2) hold with and .
Then (W3) holds with . Moreover,
Hence, it is easy to see that there exists such that (W4) holds by the above inequality. Obviously, (I1) and (I2) hold. Note that
So (I3) holds. Hence, by Theorem 3.1, we obtain that system (4.1) has at least one kTperiodic solution for every .
Moreover, it is easy to see that (K3) holds with . Since
Choose . Then (W5) holds. Hence, by Theorem 3.2, we obtain that system (4.1) has a sequence of distinct subharmonic weak solutions with period satisfying and as .
Competing interests
The author declares that he has no competing interests.
Author’s contributions
The author read and approved the final manuscript.
Acknowledgements
This work is supported by Tianyuan Fund for Mathematics of the National Natural Science Foundation of China (No. 11226135) and the Fund for Fostering Talents in Kunming University of Science and Technology (No. KKSY201207032).
References

Mawhin, J, Willem, M: Critical Point Theory and Hamiltonian Systems, Springer, New York (1989)

Long, YM: Nonlinear oscillations for classical Hamiltonian systems with bieven subquadratic potentials. Nonlinear Anal. TMA. 24, 1665–1671 (1995). Publisher Full Text

Ding, YH: Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems. Nonlinear Anal.. 25(11), 1095–1113 (1995). Publisher Full Text

Schechter, M: Periodic nonautonomous secondorder dynamical systems. J. Differ. Equ.. 223, 290–302 (2006). Publisher Full Text

Tang, CL: Periodic solutions of nonautonomous second order systems with γquasisubadditive potential. J. Math. Anal. Appl.. 189, 671–675 (1995). Publisher Full Text

Tang, CL, Wu, XP: Periodic solutions for second order systems with not uniformly coercive potential. J. Math. Anal. Appl.. 259, 386–397 (2001). Publisher Full Text

Jiang, Q, Tang, CL: Periodic ad subharmonic solutions of a class of subquadratic secondorder Hamiltonian systems. J. Math. Anal. Appl.. 328, 380–389 (2007). Publisher Full Text

Wu, X: Saddle point characterization and multiplicity of periodic solutions of nonautonomous secondorder systems. Nonlinear Anal.. 58, 899–907 (2004). Publisher Full Text

Zhao, F, Wu, X: Existence and multiplicity of nonzero periodic solution with saddle point character for some nonautonomous second order systems. J. Math. Anal. Appl.. 308, 588–595 (2005). Publisher Full Text

Tang, XH, Jiang, J: Existence and multiplicity of periodic solutions for a class of secondorder Hamiltonian systems. Comput. Math. Appl.. 59, 3646–3655 (2010). Publisher Full Text

Zhang, X, Zhou, Y: Periodic solutions of nonautonomous second order Hamiltonian systems. J. Math. Anal. Appl.. 345, 929–933 (2008). Publisher Full Text

Zhang, X, Tang, X: Subharmonic solutions for a class of nonquadratic second order Hamiltonian systems. Nonlinear Anal., Real World Appl.. 13, 113–130 (2012). Publisher Full Text

Zhang, X, Tang, X: Existence of subharmonic solutions for nonquadratic second order Hamiltonian systems. Bound. Value Probl. (2013). BioMed Central Full Text

Zhang, Q, Liu, C: Infinitely many homoclinic solutions for second order Hamiltonian systems. Nonlinear Anal.. 72, 894–903 (2010). Publisher Full Text

Nieto, JJ, O’Regan, D: Variational approach to impulsive differential equations. Nonlinear Anal., Real World Appl.. 10, 680–690 (2009). Publisher Full Text

Nieto, JJ: Variational formulation of a damped Dirichlet impulsive problem. Appl. Math. Lett.. 23, 940–942 (2010). Publisher Full Text

Xiao, J, Nieto, JJ: Variational approach to some damped Dirichlet nonlinear impulsive differential equations. J. Franklin Inst.. 348, 369–377 (2011). Publisher Full Text

Xiao, J, Nieto, JJ, Luo, Z: Multiplicity of solutions for nonlinear second order impulsive differential equations with linear derivative dependence via variational methods. Commun. Nonlinear Sci. Numer. Simul.. 17, 426–432 (2012). Publisher Full Text

Tian, Y, Ge, WG: Applications of variational methods to boundary value problem for impulsive differential equations. Proc. Edinb. Math. Soc.. 51, 509–527 (2008)

Tian, Y, Ge, WG: Variational methods to SturmLiouville boundary value problem for impulsive differential equations. Nonlinear Anal.. 72, 277–287 (2010). Publisher Full Text

Zhou, J, Li, Y: Existence of solutions for a class of secondorder Hamiltonian systems with impulsive effects. Nonlinear Anal.. 72, 1594–1603 (2010). Publisher Full Text

Sun, J, Chen, H, Nieto, JJ, OteroNovoa, M: Multiplicity of solutions for perturbed secondorder Hamiltonian systems with impulsive effects. Nonlinear Anal.. 72, 4575–4586 (2010). Publisher Full Text

Sun, J, Chen, H, Nieto, JJ: Infinitely many solutions for secondorder Hamiltonian system with impulsive effects. Math. Comput. Model.. 54, 544–555 (2011). Publisher Full Text

Wu, X, Chen, S, Teng, K: On variational methods for a class of damped vibration problems. Nonlinear Anal.. 68, 1432–1441 (2008). Publisher Full Text

Duan, S, Wu, X: The local linking theorem with an application to a class of secondorder systems. Nonlinear Anal.. 72, 2488–2498 (2010). Publisher Full Text

Han, ZQ, Wang, SQ: Multiple solutions for nonlinear systems with gyroscopic terms. Nonlinear Anal.. 75, 5756–5764 (2012). Publisher Full Text

Han, Z, Wang, S, Yang, M: Periodic solutions to second order nonautonomous differential systems with gyroscopic forces. Appl. Math. Lett.. 24, 1343–1346 (2011). Publisher Full Text

Li, X, Wu, X, Wu, K: On a class of damped vibration problems with superquadratic potentials. Nonlinear Anal.. 72, 135–142 (2010). Publisher Full Text

Zhang, X: Infinitely many solutions for a class of secondorder damped vibration systems. Electron. J. Qual. Theory Differ. Equ.. 2013, Article ID 15 (2013)

Rabinowitz, PH: Minimax Methods in Critical Point Theory with Applications to Differential Equations, Am. Math. Soc., Providence (1986)

Bartolo, P, Benci, V, Fortunato, D: Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity. Nonlinear Anal.. 7, 241–273 (1983)

Luo, Z, Xiao, J, Xu, Y: Subharmonic solutions with prescribed minimal period for some secondorder impulsive differential equations. Nonlinear Anal.. 75, 2249–2255 (2012). Publisher Full Text