Abstract
In this paper, we discuss the existence of positive solutions for secondorder differential equations subject to nonlinear impulsive conditions and nonseparated periodic boundary value conditions. Our criteria for the existence of positive solutions will be expressed in terms of the first eigenvalue of the corresponding nonimpulsive problem. The main tool of study is a fixed point theorem in a cone.
MSC: 34B37, 34B18.
Keywords:
impulsive differential equation; positive solution; fixed point theorem; nonseparated periodic boundary value condition1 Introduction
Let ω be a fixed positive number. In this paper, we are concerned with the existence of positive solutions for the following boundary value problem (BVP) with impulses:
Here, denotes the quasiderivative of . The condition (1.1c) is called a nonseparated periodic boundary value condition for (1.1a).
We assume throughout, and with further mention, that the following conditions hold.
(H1) Let , and , , , . , where (respectively ) denotes the right limit (respectively, the left limit) of at .
(H)
A function defined on is called a solution of BVP (1.1) ((1.1a)(1.1c)) if its first derivative exists for each , is absolutely continuous on each close subinterval of , there exist finite values , the impulse conditions (1.1b) and the boundary conditions (1.1c) are satisfied, and the equation (1.1a) is satisfied almost everywhere on .
For the case of (), the problem (1.1) is related to a nonseparated periodic boundary value problem of ODE. Atici and Guseinov [1] have proved the existence of a positive and twin positive solutions to BVP (1.1) by applying a fixed point theorem for the completely continuous operators in cones. In [2], Graef and Kong studied the following periodic boundary value problem:
where . Based upon the properties of Green’s function obtained in [1], the authors extended and improved the work of [1] by using topological degree theory. They derived new criteria for the existence of nontrivial solutions, positive solutions and negative solutions of the problem (1.2) when f is a signchanging function and not necessarily bounded from below even over . Very recently, He et al.[3] studied BVP (1.1) without impulses and generalized the results of [1,4] via the fixed point index theory. The problem (1.2) in the case of , the usual periodic boundary value problem, has been extensively investigated; see [47] for some results.
On the other hand, impulsive differential equations are a basic tool to study processes that are subjected to abrupt changes in their state. There has been a significant development in the last two decades. Boundary problems of secondorder differential equations with impulse have received considerable attention and much literature has been published; see, for instance, [817] and their references. However, there are fewer results about positive solutions for secondorder impulsive differential equations. To our best knowledge, there is no result about nonlinear impulsive differential equations with nonseparated periodic boundary conditions.
Motivated by the work above, in this paper we study the existence of positive solutions for the boundary value problem (1.1). By using fixed point theorems in a cone, criteria are established under some conditions on concerning the first eigenvalue corresponding to the relevant linear operator. More important, the impulsive terms are different from those of papers [8,9].
2 Preliminaries
In this section, we collect some preliminary results that will be used in the subsequent section. We denote by and the unique solutions of the corresponding homogeneous equation
under the initial boundary conditions
Put , then by [[1], Lemma 2.3], .
Definition 2.1 For two differential functions y and z, we define their Wronskian by
Theorem 2.1The Wronskian of any two solutions for equations (2.1) is constant. Especially, .
Proof Suppose that y and z are two solutions of (2.1), then
therefore, the Wronskian is constant. Further, from the initial conditions (2.2), we have . The proof is complete. □
Consider the following equation:
From Theorem 2.5 in [1], equation (2.3) has a Green function for all , which has the following properties:
() is continuous in t and s for all .
Combining with Theorem 2.1, we can also prove that
Remark 1 From paper [1], we can get when () and ,
Especially, in the case of , (), Green’s function has the form
Define an operator
then it is easy to check that is a completely continuous operator. By virtue of the KreinRutman theorem, the authors in [3] got the following result.
Lemma 2.1The spectral radiusandThas a positive eigenfunction corresponding to its first eigenvalue.
In what follows, we denote the positive eigenfunction corresponding to by ϕ and . Define a mapping Φ and a cone K in a Banach space by
Lemma 2.2The fixed point of the mapping Φ is a solution of (1.1).
Proof Clearly, Φu is continuous in t. For ,
Using () and (), we have , and
which implies that the fixed point of Φ is the solution of (1.1). The proof is complete. □
The proofs of the main theorems of this paper are based on fixed point theory. The following two wellknown lemmas in [18] are needed in our argument.
Lemma 2.3[18]
LetXbe a Banach space andKbe a cone inX. Supposeandare open subsets ofXsuch that, and suppose that
is a completely continuous operator such that
Lemma 2.4[18]
LetXbe a Banach space andKbe a cone inX. Supposeandare open subsets ofXsuch that, and suppose that
is a completely continuous operator such that
• There existssuch thatforand, for, or
3 Main results
Recalling that δ was defined after Lemma 2.1, for convenience, we introduce the following notations. Assume that the constant and γ is some positive function on J,
Theorem 3.1Assume that there exist positive constantsα, βsuch that, , , and
Then (1.1) has at least one positive solutionusuch that.
Proof Clearly, , let , . Define the open sets
Then is completely continuous. By (3.1) and the definition of , , , , there exists such that
and
If not, there exist and such that . Let . Noting that for any , we obtain that for ,
which implies that , a contradiction.
On the other hand, for , , we have
From Lemma 2.4 it follows that Φ has a fixed point . Furthermore, and , which means that is a positive solution of Eq. (1.1). The proof is complete. □
In the next theorem, we make use of the eigenvalue and the corresponding eigenfunction ϕ introduced in Lemma 2.1.
Theorem 3.2Assume that there exist positive constantsα, βsuch that, , , and
hereonJ. Then (1.1) has at least one positive solutionusuch that.
Proof Obviously, , put , . Define the open sets
At first, we show that . For any , from (), we have
On the other hand,
It is easy to check that is completely continuous.
Next, we show that
If not, there exist and such that . Hence,
Multiplying the first equation of (3.8) by ϕ and integrating from 0 to ω, we obtain that
One can find that
Substituting (3.10) into (3.9), we get
which implies that
a contradiction.
Finally, we show that
Since and are negative for and , the condition (3.6) implies that . Hence, for and for any ,
Suppose that there exist and such that , that is,
Multiplying the first equation of (3.11) by ϕ and integrating from 0 to ω, we obtain that
One can get that
Substituting (3.13) into (3.12), we get
a contradiction.
From Lemma 2.3 it follows that Φ has a fixed point . Furthermore, and , which means that is a positive solution of Eq. (1.1). The proof is complete. □
Corollary 3.1Assume that, , , and
or
hereonJ. Then (1.1) has at least one positive solution.
Corollary 3.2Assume that there exists a constantαsuch that, (, αand ∞) and
hereonJ. Then there exists one open intervalsuch that (1.1) has at least two positive solutions for.
Example 1 Consider the equation
here and . Since , and , by Theorem 3.1, (3.14) has at least one positive solution for any .
Example 2 Consider the equation
It is well known that, for the problem consisting of the equation , , and the boundary condition
the first eigenvalue is 0 (see, for example, [[19], p.428]). It follows that the first eigenvalue is for the problem consisting of the equation
and the boundary condition (3.16). Meanwhile, we can obtain the positive eigenfunction corresponding to . It is also easy to check that , , and (here ). So, the righthand side of the inequality in Corollary 3.2 is obviously satisfied. Considering the monotonicity of and , we can choose a sufficiently small positive constant α such that the lefthand side of the inequality is true. Therefore, by a direct application of Corollary 3.2, there exists one open interval such that (3.15) has at least two positive solutions for .
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally to the manuscript and read and approved the final manuscript.
Acknowledgements
The authors would like to thank anonymous referees very much for helpful comments and suggestions which led to the improvement of presentation and quality of work. This research was partially supported by the NNSF of China (No. 11001274, 11171085) and the Postdoctoral Science Foundation of Central South University and China (No. 2011M501280).
References

Atici, FM, Guseinov, GS: On the existence of positive solutions for nonlinear differential equations with periodic boundary conditions. J. Comput. Appl. Math.. 132, 341–356 (2001). Publisher Full Text

Graef, JR, Kong, L: Existence results for nonlinear periodic boundary value problems. Proc. Edinb. Math. Soc.. 52, 79–95 (2009). Publisher Full Text

He, TS, Yang, F, Chen, C, Peng, S: Existence and multiplicity of positive solutions for nonlinear boundary value problems with a parameter. Comput. Math. Appl.. 61, 3355–3363 (2011). Publisher Full Text

Hao, X, Liu, L, Wu, Y: Existence and multiplicity results for nonlinear periodic boundary value problems. Nonlinear Anal.. 72, 3635–3642 (2010). Publisher Full Text

Torres, PJ: Existence of onesigned periodic solutions of some secondorder differential equations via a Krasnosel’skii fixed point theorem. J. Differ. Equ.. 190, 643–662 (2003). Publisher Full Text

Graef, GR, Kong, L, Wang, H: Existence, multiplicity and dependence on a parameter for a periodic boundary value problem. J. Differ. Equ.. 245, 1185–1197 (2008). Publisher Full Text

Rachunkova, I: Existence of two positive solutions of a singular nonlinear periodic boundary value problem. J. Comput. Appl. Math.. 113, 24–34 (2000). PubMed Abstract

Huseynov, A: On the sign of Green’s function for an impulsive differential equation with periodic boundary conditions. Appl. Math. Comput.. 208, 197–205 (2009). Publisher Full Text

Huseynov, A: Positive solutions of a nonlinear impulsive equation with periodic boundary conditions. Appl. Math. Comput.. 217, 247–259 (2010). Publisher Full Text

Hristova, SG, Bainov, DD: Monotoneiterative techniques of V. Lakshmikantham for a boundary value problem for systems of impulsive differentialdifference equation. J. Math. Anal. Appl.. 197, 1–13 (1996). Publisher Full Text

Lin, X, Jiang, DQ: Multiple positive solutions of Dirichlet boundary value problems for second order impulsive differential equations. J. Math. Anal. Appl.. 321, 501–514 (2006). Publisher Full Text

Ding, W, Han, M: Periodic boundary value problems for second order impulsive differential equations. Appl. Math. Comput.. 216, 284–302 (1997)

Agarwal, RP, O’Regan, D: Multiple nonnegative solutions for second order impulsive differential equations. Appl. Math. Comput.. 114, 51–59 (2000). Publisher Full Text

Lakshmikntham, V, Bainov, DD, Simeonov, PS: Theory of Impulsive Differential Equations, World Scientific, Singapore (1989)

Feng, M, Xie, D: Multiple positive solutions of multipoint boundary value problem for secondorder impulsive differential equations. J. Comput. Appl. Math.. 223, 438–448 (2009). Publisher Full Text

Liu, LS, Hu, L, Wu, Y: Positive solutions of twopoint boundary value problems for systems of nonlinear secondorder singular and impulsive differential equations. Nonlinear Anal.. 69, 3774–3789 (2008). Publisher Full Text

Li, JL, Shen, J: Periodic boundary value problems for second order differential equations with impulses. Nonlinear Stud.. 12, 391–400 (2005)

Guo, DJ, Lakshmikantham, V: Nonlinear Problem in Abstract Cones, Academic Press, New York (1988)

Stakgold, I: Green’s Functions and BoundaryValue Problems, Wiley, New York (1979).