Abstract
In the present paper, we consider the abstract Cauchy problem for the fractional differential equation
in an arbitrary Banach space E with the strongly positive operators . The wellposedness of this problem in spaces of smooth functions is established. The coercive stability estimates for the solution of problems for 2mth order multidimensional fractional parabolic equations and onedimensional fractional parabolic equations with nonlocal boundary conditions in a space variable are obtained. The stable difference scheme for the approximate solution of this problem is presented. The wellposedness of the difference scheme in difference analogues of spaces of smooth functions is established. In practice, the coercive stability estimates for the solution of difference schemes for the fractional parabolic equation with nonlocal boundary conditions in a space variable and the 2mth order multidimensional fractional parabolic equation are obtained.
MSC: 65M12, 65N12.
Keywords:
fractional parabolic equation; Basset problem; wellposedness; coercive stability1 Introduction
It is known that differential equations involving derivatives of noninteger order have shown to be adequate models for various physical phenomena in areas like rheology, damping laws, diffusion processes, etc. Methods of solutions of problems for fractional differential equations have been studied extensively by many researchers (see, e.g., [143] and the references given therein).
The role played by coercive stability inequalities (wellposedness) in the study of boundary value problems for parabolic partial differential equations is well known (see, e.g., [4451]). In the present paper, the initial value problem
for the fractional differential equation in an arbitrary Banach space E with the linear (unbounded) operators is considered. Here and are the unknown and the given functions, respectively, defined on with values in E. The derivative is understood as the limit in the norm of E of the corresponding ratio of differences. is a given closed linear operator in E with the domain , independent of t and dense in E. Finally, .
Here is the standard RiemannLiouville derivative of order . This fractional differential equation corresponds to the Basset problem [9]. It represents a classical problem in fluid dynamics where the unsteady motion of a particle accelerates in a viscous fluid due to the gravity of force. Recently, fractional Basset equations with independent in t operator coefficients have been studied extensively (see, e.g., [5256] and the references given therein).
In the present paper, the wellposedness of problem (2) with dependent in t operator coefficients in spaces of smooth functions is established. In practice, the coercive stability estimates for the solution of problems for 2mth order multidimensional fractional parabolic equations and onedimensional fractional parabolic equations with nonlocal boundary conditions in a space variable are obtained. The stable difference scheme for the approximate solution of initial value problem (2)
The paper is organized as follows. The wellposedness of problem (2) in spaces of smooth functions is established in Section 2. In Section 3 the coercive stability estimates for the solution of problems for 2mth order multidimensional fractional parabolic equations and onedimensional fractional parabolic equations with nonlocal boundary conditions are obtained. The wellposedness of (3) in difference analogues of spaces of smooth functions is established and the coercive stability estimates for the solution of difference schemes for the fractional parabolic equation with nonlocal boundary conditions in a space variable and the 2mth order multidimensional fractional parabolic equation are obtained in Section 4.
2 The wellposedness of problem (2)
A function is called a solution of problem (2) if the following conditions are satisfied:
(i) is continuously differentiable on the segment . The derivatives at the endpoints of the segment are understood as the appropriate unilateral derivatives.
(ii) The element belongs to for all and the function is continuous on the segment .
(iii) satisfies the equation and the initial condition (2).
A solution of problem (2) defined in this manner will from now on be referred to as a solution of problem (2) in the space of all continuous functions defined on with values in E equipped with the norm
In this paper, positive constants, which can differ in time, are indicated with an M. On the other hand, is used to focus on the fact that the constant depends only on .
The wellposedness in of boundary value problem (2) means that the coercive inequality
Suppose that for each the operator generates an analytic semigroup () with an exponentially decreasing norm, when , i.e., the following estimates
hold for some , . From this inequality it follows the operator exists and is bounded, and hence is closed in .
Suppose that the operator is Hölder continuous in t in the uniform operator topology for each fixed s, that is,
An operatorvalued function , defined and strongly continuous jointly in t, s for , is called a fundamental solution of (2) if
(1) the operator is strongly continuous in t and s for ,
(2)
the following identity holds:
(3) the operator maps the region D into itself. The operator is bounded and strongly continuous in t and s for ,
(4) on the region D the operator is strongly differentiable relative to t and s, while
and
Now, let us obtain the representation for the solution of problem (2). The initial value problem
has a unique solution [54] and the following formula holds:
Using and the formula , we get
Now, we will give a series of interesting lemmas and estimates concerning the fundamental solution of (2) which will be useful in the sequel.
Lemma 2.1For anyand, the following identities hold:
Lemma 2.2For any, and, the following estimates hold:
Theorem 2.1Letbe a strongly positive operator in a Banach spaceEand. Then for the solutioninof initial value problem (2), the following stability inequality holds:
Proof Using formula (12), we get
Applying formula (23) and the formula
we obtain
Let us first obtain the estimate
Applying estimate (21), we get
Now, we will estimate . We have that
Applying estimate (17), we get
Estimate (26) follows from estimates (29) and (31).
Now, let us first estimate . Applying the triangle inequality and estimate (26), we get
for any . Applying the above inequality and the integral inequality, we obtain
Using the triangle inequality and equation (2), we get
Estimate (22) follows from estimates (33) and (35). Theorem 2.1 is proved. □
With the help of , we introduce the fractional spaces , , consisting of all for which the following norms are finite:
From (6) and (7) it follows that
Problem (2) is not well posed in for arbitrary E. It turns out that a Banach space E can be restricted to a Banach space in such a manner that the restricted problem (2) in will be well posed in . The role of will be played here by the fractional spaces ().
Theorem 2.3Suppose (). Suppose that assumptions (6) and (7) hold and. Then for the solutioninof problem (2), the coercive inequality
holds.
Proof
By Theorem 2.1,
for the solution of initial value problem (2). The proof of the estimate
for the solution of initial value problem (2) is based on formula (12), estimate (38) and the following estimates [54]:
Using equation (2) and the triangle inequality, we get
Estimate (37) follows from estimates (39) and (42). Theorem 2.3 is proved. □
Let us give, without proof, the following result.
Theorem 2.4Suppose that assumption (6) holds. Suppose that the operatoris Hölder continuous intin the uniform operator topology for each fixeds, that is,
whereMandεare positive constants independent oft, sandτfor. Suppose (). Then for the solutioninof problem (2), the coercive inequality
holds.
3 Applications
Now, we consider the applications of Theorems 2.1, 2.3 and 2.4.
First, the Cauchy problem on the range for the 2morder multidimensional fractional parabolic equation is considered:
where and are given as sufficiently smooth functions. Here, σ is a sufficiently large positive constant.
Let us consider a differential operator with constant coefficients of the form
acting on functions defined on the entire space . Here is a vector with nonnegative integer components, . If () is an infinitely differentiable function that decays at infinity together with all its derivatives, then by means of the Fourier transformation, one establishes the equality
Here the Fourier transform operator is defined by the following rule:
The function is called the symbol of the operator B and is given by
We will assume that the symbol
of the differential operator of the form
acting on functions defined on the space , satisfies the inequalities
for . Problem (45) has a unique smooth solution. This allows us to reduce problem (45) to the abstract Cauchy problem (2) in a Banach space of all continuous bounded functions defined on satisfying the Hölder condition with the indicator with a strongly positive operator defined by (52) (see [57,58]).
Theorem 3.1For the solution of boundary problem (45), the following estimates are satisfied:
The proof of Theorem 3.1 is based on the abstract Theorems 2.1, 2.3, 2.4 and the coercivity inequality for an elliptic operator in and on the following theorem on the structure of the fractional spaces .
Theorem 3.2for alland[59].
Second, we consider the mixed boundary value problem for the fractional parabolic equation
where and are given sufficiently smooth functions and . Here, σ is a sufficiently large positive constant.
We introduce the Banach spaces () of all continuous functions satisfying the Hölder condition for which the following norms are finite:
where is the space of all continuous functions defined on [0,1] with the usual norm
It is known that the differential expression [60]
defines a positive operator acting in with the domain and satisfying the conditions , . Therefore, we can replace the mixed problem (56) by the abstract boundary value problem (2). Using the results of Theorems 2.1, 2.3, 2.4, we can obtain the following theorem.
Theorem 3.3For the solution of mixed problem (56), the following estimates are valid:
The proof of Theorem 3.3 is based on abstract Theorems 2.1, 2.3, 2.4 and on the following theorem on the structure of the fractional spaces .
Theorem 3.4for all, [60].
4 The wellposedness of problem (3)
Let us first obtain the representation for the solution of problem (3). It is clear that the first order of accuracy difference scheme
has a solution and the following formula holds:
where
So, formula (66) gives the representation for the solution of problem (3).
Let be the linear space of mesh functions with values in the Banach space E. Next on we introduce the Banach space with the norm
Theorem 4.1Letbe a strongly positive operator in a Banach spaceE. Then for the solutioninof initial value problem (3), the stability inequality
holds.
Proof Using formula (66), we get
Applying formulas (69) and (65), we obtain
Let us first obtain the estimate
Using estimates
and the following elementary inequality:
we obtain
Now, we will estimate . We have that
Applying estimates (73) and (74), we get
Estimate (71) follows from estimates (75) and (80).
Now, let us first estimate . Applying the triangle inequality and estimate (71), we get
for any . Applying the above inequality and the difference analogue of the integral inequality, we obtain
Using the triangle inequality and equation (3), we get
Estimate (68) follows from estimates (88) and (89). Theorem 4.1 is proved. □
With the help of , we introduce the fractional spaces , , consisting of all for which the following norms are finite:
From (73) it follows that
Problem (3) is not well posed in for arbitrary E. It turns out that a Banach space E can be restricted to a Banach space in such a manner that the restricted problem (3) in will be well posed in . The role of will be played here by the fractional spaces ().
Theorem 4.3Suppose that assumptions (6) and (7) hold and. Then for the solutioninof initial value problem (3), the coercive stability inequality
holds.
Proof
By Theorem 4.1,
for the solution of initial value problem (3). The proof of the estimate
for the solution of initial value problem (3) is based on estimate (92) and the following estimates [51]:
Using the triangle inequality and equation (3), we get
Estimate (91) follows from estimates (93) and (96). Theorem 4.3 is proved. □
Let us give, without proof, the following result.
Theorem 4.4Suppose that assumptions (6) and (43) hold. Then for the solutioninof initial value problem (3), the coercive stability inequality
holds.
Note that by passing to the limit for , one can recover Theorems 2.12.3 and 2.4.
5 Applications
Now, we consider the applications of Theorems 4.1, 4.3 and 4.4.
First, initial value problem (45) is considered. The discretization of problem (45) is carried out in two steps. In the first step, the grid space () is defined as the set of all points of the Euclidean space whose coordinates are given by
The difference operator is assigned to the differential operator , defined by (52). The operator
acts on functions defined on the entire space . Here is a vector with nonnegative integer coordinates,
where is the unit vector of the axis .
An infinitely differentiable function of the continuous argument that is continuous and bounded together with all its derivatives is said to be smooth. We say that the difference operator is a λth order () approximation of the differential operator if the inequality
holds for any smooth function . The coefficients are chosen in such a way that the operator approximates in a specified way the operator . It will be assumed that the operator approximates the differential operator with any prescribed order [57,58].
The function is obtained by replacing the operator in the righthand side of equality (99) with the expression , respectively, and is called the symbol of the difference operator .
It will be assumed that for and fixed x, the symbol of the operator satisfies the inequalities
Suppose that the coefficient of the operator is bounded and satisfies the inequalities
With the help of , we arrive at the nonlocal boundary value problem
for an infinite system of ordinary differential equations.
In the second step, problem (104) is replaced by the difference scheme
Based on the number of corollaries of the abstract theorems given in the above, to formulate the result, one needs to introduce the spaces and of all bounded grid functions defined on , equipped with the norms
Theorem 5.1Suppose that assumptions (102) and (103) for the operatorhold. Then, the solutions of difference scheme (105) satisfy the following stability estimates:
The proof of Theorem 5.1 is based on the abstract Theorems 4.1, 4.3, 4.4 and the strong positivity of the operator defined by (114) in and on the following two theorems on the coercivity inequality for the solution of the elliptic difference equation in and on the structure of the fractional space .
Theorem 5.2Suppose that assumptions (102) and (103) for the operatorhold. Then for the solutions of the elliptic difference equation
the estimates[54]
are valid.
Theorem 5.3Suppose that assumptions (102) and (103) for the operatorhold. Then for any, the norms in the spacesandare equivalent uniformly inh[51].
Second, we consider mixed boundary value problem (56). The discretization of problem (56) is carried out in two steps. In the first step, let us define the grid space
We introduce the Banach space () of the grid functions defined on , equipped with the norm
where is the space of the grid functions defined on , equipped with the norm
To the differential operator A generated by problem (56), we assign the difference operator by the formula
acting in the space of grid functions satisfying the conditions , . With the help of , we arrive at the initial boundary value problem
for an infinite system of ordinary fractional differential equations. In the second step, we replace problem (115) by difference scheme (3)
Theorem 5.4Letτandhbe sufficiently small numbers. Then, the solutions of difference scheme (116) satisfy the following stability estimates:
The proof of Theorem 5.4 is based on the abstract Theorems 4.1, 4.3, 4.4 and the strong positivity of the operator defined by (114) in and on the following theorem on the structure of the fractional space .
Theorem 5.5For any, the norms in the spacesandare equivalent uniformly inhand[60].
Competing interests
The author declares that they have no competing interests.
Acknowledgements
The author would like to thank Prof. P. E. Sobolevskii for his helpful suggestions to the improvement of this paper.
References

Podlubny, I: Fractional Differential Equations, Academic Press, San Diego (1999)

Samko, SG, Kilbas, AA, Marichev, OI: Fractional Integrals and Derivatives, Gordon & Breach, Yverdon (1993)

Kilbas, AA, Sristava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam (2006)

ElMesiry, AEM, ElSayed, AMA, ElSaka, HAA: Numerical methods for multiterm fractional (arbitrary) orders differential equations. Appl. Math. Comput.. 160(3), 683–699 (2005). Publisher Full Text

Diethelm, K: The Analysis of Fractional Differential Equations, Springer, Berlin (2010)

Pedas, A, Tamme, E: On the convergence of spline collocation methods for solving fractional differential equations. J. Comput. Appl. Math.. 235(12), 3502–3514 (2011). PubMed Abstract  Publisher Full Text

Diethelm, K, Ford, NJ: Multiorder fractional differential equations and their numerical solution. Appl. Math. Comput.. 154(3), 621–640 (2004). Publisher Full Text

ElSayed, AMA, Gaafar, FM: Fractional order differential equations with memory and fractionalorder relaxationoscillation model. Pure Math. Appl.. 12(3), 296–310 (2001)

Basset, AB: On the descent of a sphere in a viscous liquid. Q. J. Math.. 42, 369–381 (1910)

Mainardi, F: Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpinteri A, Mainardi F (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 291–348. Springer, New York (1997)

Momani, S, AlKhaled, K: Numerical solutions for systems of fractional differential equations by the decomposition method. Appl. Math. Comput.. 162(3), 1351–1365 (2005). Publisher Full Text

Bagley, RL, Torvik, PJ: On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech.. 51, 294–298 (1984). Publisher Full Text

Matignon, D: Stability results for fractional differential equations with applications to control processing. (1996)

Lavoie, JL, Osler, TJ, Tremblay, R: Fractional derivatives and special functions. SIAM Rev.. 18(2), 240–268 (1976). Publisher Full Text

Tarasov, VE: Fractional derivative as fractional power of derivative. Int. J. Math.. 18, 281–299 (2007). Publisher Full Text

Ashyralyev, A, Dal, F, Pinar, Z: On the numerical solution of fractional hyperbolic partial differential equations. Math. Probl. Eng.. 2009, Article ID 730465 (2009)

Ashyralyev, A: A note on fractional derivatives and fractional powers of operators. J. Math. Anal. Appl.. 357(1), 232–236 (2009). Publisher Full Text

Podlubny, I, ElSayed, AMA: On two definitions of fractional calculus. Slovak Academy of Science, Institute of Experimental Physics (1996)

Yakar, A, Koksal, ME: Existence results for solutions of nonlinear fractional differential equations. Abstr. Appl. Anal.. 2012, Article ID 267108 (2012)

De la Sen, M: Positivity and stability of the solutions of Caputo fractional linear timeinvariant systems of any order with internal point delays. Abstr. Appl. Anal.. 2011, Article ID 161246 (2011)

Yuan, C: Two positive solutions for type semipositone integral boundary value problems for coupled systems of nonlinear fractional differential equations. Commun. Nonlinear Sci. Numer. Simul.. 17(2), 930–942 (2012). Publisher Full Text

De la Sen, M, Agarwal, RP, Ibeas, A: On the existence of equilibrium points, boundedness, oscillating behavior and positivity of a SVEIRS epidemic model under constant and impulsive vaccination. Adv. Differ. Equ.. 2011, Article ID 748608 (2011)

De la Sen, M: About robust stability of Caputo linear fractional dynamic systems with time delays through fixed point theory. Fixed Point Theory Appl.. 2011, Article ID 867932 (2011)

Yuan, C: Multiple positive solutions for semipositone type boundary value problems of nonlinear fractional differential equations. Anal. Appl.. 9(1), 97–112 (2011). Publisher Full Text

Yuan, C: Multiple positive solutions for type semipositone conjugate boundary value problems for coupled systems of nonlinear fractional differential equations. Electron. J. Qual. Theory Differ. Equ.. 2011, Article ID 13 (2011)

Agarwal, RP, Belmekki, M, Benchohra, M: A survey on semilinear differential equations and inclusions involving RiemannLiouville fractional derivative. Adv. Differ. Equ.. 2009, Article ID 981728 (2009)

Agarwal, RP, de Andrade, B, Cuevas, C: On type of periodicity and ergodicity to a class of fractional order differential equations. Adv. Differ. Equ.. 2010, Article ID 179750 (2010)

Agarwal, RP, de Andrade, B, Cuevas, C: Weighted pseudoalmost periodic solutions of a class of semilinear fractional differential equations. Nonlinear Anal., Real World Appl.. 11, 3532–3554 (2010). Publisher Full Text

Berdyshev, AS, Cabada, A, Karimov, ET: On a nonlocal boundary problem for a parabolichyperbolic equation involving a RiemannLiouville fractional differential operator. Nonlinear Anal.. 75(6), 3268–3273 (2011)

Ashyralyev, A, Amanov, D: Initialboundary value problem for fractional partial differential equations of higher order. Abstr. Appl. Anal.. 2012, Article ID 973102 (2012)

Ashyralyev, A, Sharifov, YA: Existence and uniqueness of solutions of the system of nonlinear fractional differential equations with nonlocal and integral boundary conditions. Abstr. Appl. Anal.. 2012, Article ID 594802 (2012)

Ashyralyev, A, Hicdurmaz, B: A note on the fractional Schrödinger differential equations. Kybernetes. 40(56), 736–750 (2011)

Ashyralyev, A, Dal, F, Pinar, Z: A note on the fractional hyperbolic differential and difference equations. Appl. Math. Comput.. 217(9), 4654–4664 (2011). Publisher Full Text

Kirane, M, Laskri, Y: Nonexistence of global solutions to a hyperbolic equation with a spacetime fractional damping. Appl. Math. Comput.. 167(2), 1304–1310 (2005). Publisher Full Text

Kirane, M, Laskri, Y, Tatar, Ne: Critical exponents of Fujita type for certain evolution equations and systems with spatiotemporal fractional derivatives. J. Math. Anal. Appl.. 312(2), 488–501 (2005). Publisher Full Text

Kirane, M, Malik, SA: The profile of blowingup solutions to a nonlinear system of fractional differential equations. Nonlinear Anal., Theory Methods Appl.. 73(12), 3723–3736 (2010). Publisher Full Text

Araya, D, Lizama, C: Almost automorphic mild solutions to fractional differential equations. Nonlinear Anal.. 69(11), 3692–3705 (2008). Publisher Full Text

N’Guerekata, GM: A Cauchy problem for some fractional abstract differential equation with nonlocal conditions. Nonlinear Anal.. 70, 1873–1876 (2009). Publisher Full Text

Mophou, GM, N’Guerekata, GM: Mild solutions for semilinear fractional differential equations. Electron. J. Differ. Equ.. 2009, Article ID 21 (2009)

Mophou, GM, N’Guerekata, GM: Existence of mild solution for some fractional differential equations with nonlocal conditions. Semigroup Forum. 79(2), 315–322 (2009). Publisher Full Text

Lakshmikantham, V: Theory of fractional differential equations. Nonlinear Anal.. 69(10), 3337–3343 (2008). Publisher Full Text

Lakshmikantham, V, Devi, JV: Theory of fractional differential equations in Banach spaces. Eur. J. Pure Appl. Math.. 1, 38–45 (2008)

Lakshmikantham, V, Vatsala, A: Theory of fractional differential inequalities and applications. Commun. Appl. Anal.. 11(34), 395–402 (2007)

Clement, P, GuerreDelabrire, S: On the regularity of abstract Cauchy problems and boundary value problems. Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl.. 9(4), 245–266 (1998)

Agarwal, RP, Bohner, M, Shakhmurov, VB: Maximal regular boundary value problems in Banachvalued weighted spaces. Bound. Value Probl.. 1, 9–42 (2005)

Shakhmurov, VB: Coercive boundary value problems for regular degenerate differentialoperator equations. J. Math. Anal. Appl.. 292(2), 605–620 (2004). Publisher Full Text

Lunardi, A: Analytic semigroups and optimal regularity in parabolic problems. Operator Theory Advances and Applications, Birkhäuser, Basel (1995)

Ashyralyev, A, Hanalyev, A, Sobolevskii, PE: Coercive solvability of nonlocal boundary value problem for parabolic equations. Abstr. Appl. Anal.. 6(1), 53–61 (2001). Publisher Full Text

Sobolevskii, PE: The coercive solvability of difference equations. Dokl. Akad. Nauk SSSR. 201(5), 1063–1066 (Russian) (1971)

Sobolevskii, PE: Some properties of the solutions of differential equations in fractional spaces. Trudy Nauchn.Issled. Inst. Mat. Voronezh. Gos. Univ. No.. 68–74 (Russian) (1975)

Ashyralyev, A, Sobolevskii, PE: New difference schemes for partial differential equations. Operator Theory: Advances and Applications, Birkhäuser, Basel (2004)

Ashyralyev, A: Wellposedness of the Basset problem in spaces of smooth functions. Appl. Math. Lett.. 24, 1176–1180 (2011). Publisher Full Text

Ashyralyev, A, Cakir, Z: On the numerical solution of fractional parabolic partial differential equations. AIP Conf. Proc.. 1389, 617–620 (2011)

Ashyralyev, A: Wellposedness of parabolic differential and difference equations with the fractional differential operator. Malays. J. Math. Sci.. 6(S), 73–89 (2012)

Cakir, Z: Stability of difference schemes for fractional parabolic PDE with the DirichletNeumann conditions. Abstr. Appl. Anal.. 2012, Article ID 463746 (2012)

Ashyralyev, A, Cakir, Z: On the numerical solution of fractional parabolic partial differential equations with the Dirichlet condition. Discrete Dyn. Nat. Soc.. 2012, Article ID 696179 (2012)

Smirnitskii, YA, Sobolevskii, PE: Positivity of multidimensional difference operators in the Cnorm. Usp. Mat. Nauk. 36(4), 202–203 (Russian) (1981)

Smirnitskii, YA: Fractional powers of elliptic difference operators. PhD thesis, Voronezh State University, Voronezh (1983) (Russian)

Ashyralyev, A, Sobolevskii, PE: Wellposedness of parabolic difference equations. Operator Theory Advances and Applications, Birkhäuser, Basel (1994)

Ashyralyev, A: Fractional spaces generated by the positive differential and difference operator in a Banach space. In: Taş K, Tenreiro Machado JA, Baleanu D (eds.) Proceedings of the Conference ‘Mathematical Methods and Engineering’, pp. 13–22. Springer, Berlin (2007)