SpringerOpen Newsletter

Receive periodic news and updates relating to SpringerOpen.

This article is part of the series Recent Trends on Boundary Value Problems and Related Topics.

Open Access Research

Numerical investigation of stagnation point flow over a stretching sheet with convective boundary conditions

Muhammad Khairul Anuar Mohamed1, Mohd Zuki Salleh2*, Roslinda Nazar3 and Anuar Ishak3

Author Affiliations

1 Faculty of Information and Interactive Technology, University College Shahputra, Kuantan, Pahang, 25200, Malaysia

2 Faculty of Industrial Science and Technology, Universiti Malaysia Pahang, UMP, Kuantan, Pahang, 26300, Malaysia

3 School of Mathematical Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor, 43600, Malaysia

For all author emails, please log on.

Boundary Value Problems 2013, 2013:4  doi:10.1186/1687-2770-2013-4

The electronic version of this article is the complete one and can be found online at: http://www.boundaryvalueproblems.com/content/2013/1/4


Received:31 August 2012
Accepted:26 December 2012
Published:16 January 2013

© 2013 Mohamed et al.; licensee Springer

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this study, the mathematical modeling for stagnation point flow over a stretching surface with convective boundary conditions is considered. The transformed boundary layer equations are solved numerically using the shooting method. Numerical solutions are obtained for the skin friction coefficient, the surface temperature as well as the velocity profiles. The features of the flow and heat transfer characteristics for various values of the Prandtl number, stretching parameter and conjugate parameter are analyzed and discussed.

Keywords:
convective boundary conditions; mathematical modeling; stagnation point flow; stretching sheet

1 Introduction

Problems related to convection boundary layer flows are important in engineering and industrial activities. Such flows are applied to manage thermal effects in many industrial outputs, for example, in electronic devices, computer power supply and also in an engine cooling system such as a heatsink in a car radiator. Sakiadis [1] was the first to study the boundary layer flow on a continuous solid surface moving at a constant speed. Due to entrainment of the ambient fluid, this boundary layer flow is quite different from the Blasius flow past a flat plate. Sakiadis’s theoretical predictions for Newtonian fluids were later corroborated experimentally by Tsou et al.[2]. Flow of a viscous fluid past a stretching sheet is a classical problem in fluid dynamics. Crane [3] was the first to study the convection boundary layer flow over a stretching sheet. The heat and mass transfer on a stretching sheet with suction or blowing was investigated by Gupta and Gupta [4]. They considered an isothermal moving plate and obtained the temperature and concentration distributions. Chen and Char [5] studied the laminar boundary layer flow and heat transfer from a linearly stretching, continuous sheet subjected to suction or blowing with prescribed wall temperature and heat flux. Stagnation flow towards a shrinking sheet was then investigated by Wang [6] who considered the prescribed wall temperature case. Ishak et al.[7-9] studied the MHD stagnation point flow towards a stretching sheet, mixed convection towards a vertical and continuosly stretching sheet and post stagnation-point towards a vertical and linearly stretching sheet. This type of problem was then extended to viscous fluids, viscoelastic fluids or micropolar fluids by many investigators by considering the usually applied boundary conditions, either prescribed wall temperature or prescribed wall heat flux. Recently, Mohamed et al.[10] studied the stagnation point flow over a stretching sheet and Hayat et al.[11] investigated the flow of a second grade fluid over a stretching surface with Newtonian heating.

On the other hand, Merkin [12] has shown that in general, there are four common heating processes specifying the wall-to-ambient temperature distributions, namely (i) constant or prescribed wall temperature; (ii) constant or prescribed surface heat flux; (iii) Newtonian heating (NH); and (iv) convective/conjugate boundary conditions (CBC), where heat is supplied through a bounding surface of finite thickness and finite heat capacity. The interface temperature is not known a priori but depends on the intrinsic properties of the system, namely the thermal conductivity of the fluid or solid. Recent demands in heat transfer engineering have requested researchers to develop various new types of heat transfer equipments with superior performance, especially compact and light-weight ones. With the increasing need for small-size units, focus has been cast on the effects of the interaction between developments of thermal boundary layers in both fluid streams and of axial wall conduction, which usually affects the heat exchanges performance. Since the early paper by Luikov et al.[13], many contributions to the topic of conjugate heat transfer have been made. The conjugate/convective boundary condition has been used only quite recently by Aziz [14] who studied the laminar thermal boundary layer over a flat plate. This Blasius flow with the conjugate boundary condition then has been revisited by Rashidi and Erfani [15] and Magyari [16]. Makinde and Aziz [17] considered the hydromagnetic heat and mass transfer over a vertical plate. Ishak et al.[18,19] have studied the thermal boundary layer flow on a moving plate (Sakiadis flow) with radiation effects. Recently, Merkin and Pop [20], Yao et al.[21], Yacob et al.[22] and Yacob and Ishak [23] investigated the boundary layer flow past a shrinking/stretching sheet with convective boundary conditions in a viscous fluid, nanofluid or micropolar fluid, respectively. Excellent reviews of the topics of convective heat transfer problems can be found in the books by Kimura et al.[24] and Martynenko and Khramtsov [25].

Motivated by the works of Wang [6] and Yacob and Ishak [23], we aim in this study to investigate the problem of stagnation point flow over a stretching sheet with convective boundary conditions. The governing nonlinear partial differential equations are first transformed into a system of ordinary differential equations by a similarity transformation before being solved numerically using the shooting method (see Salleh et al.[26] for more details about this method).

2 Mathematical formulation

A steady two-dimensional stagnation-point flow over a stretching/shrinking plate immersed in an incompressible viscous fluid of ambient temperature <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M1">View MathML</a> is considered. It is assumed that the external velocity <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M2','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M2">View MathML</a> and the stretching velocity <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M3">View MathML</a> are of the forms <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M4','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M4">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M5','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M5">View MathML</a>, where a and b are constants. The physical model and coordinate system of this problem are shown in Figure 1. It is further assumed that the plate is subjected to a conjugate boundary condition. The boundary layer equations are

(1)

(2)

(3)

subject to the boundary conditions (Salleh et al.[27] and Aziz [14])

(4)

where u and v are the velocity components along the x and y directions, respectively. Further, T is temperature, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M10','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M10">View MathML</a> is the temperature of the hot fluid, ν is the kinematic viscosity, k is the thermal conductivity, α is the thermal diffusivity and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M11','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M11">View MathML</a> is the heat transfer coefficient.

thumbnail Figure 1 . Physical model and the coordinate system.

We now introduce the following similarity variables (see Salleh et al.[27] and Aziz [14]):

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M12','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M12">View MathML</a>

(5)

where ψ is the stream function defined as <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M13">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M14','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M14">View MathML</a>, which identically satisfies Equation (1). Thus, we have

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M15','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M15">View MathML</a>

(6)

where prime denotes differentiation with respect to η. Substituting (5) and (6) into Equations (2) and (3), we obtain the following nonlinear ordinary differential equations:

(7)

(8)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M18','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M18">View MathML</a> is the Prandtl number. The boundary conditions (4) become

(9)

(10)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M21','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M21">View MathML</a> is the stretching parameter. Further, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M22','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M22">View MathML</a> (NH) or <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M23','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M23">View MathML</a> (CBC) is the conjugate parameter for the convective boundary condition. It is noticed that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M24','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M24">View MathML</a> is for the insulated plate and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M25','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M25">View MathML</a> is when the surface temperature is prescribed. The physical quantities of interest are the skin friction coefficient <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M26','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M26">View MathML</a> and the local Nusselt number <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M27','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M27">View MathML</a> which are given by

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M28','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M28">View MathML</a>

(11)

where ρ is the fluid density. The surface shear stress <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M29','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M29">View MathML</a> and the surface heat flux <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M30','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M30">View MathML</a> are given by

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M31','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M31">View MathML</a>

(12)

with <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M32','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M32">View MathML</a> and k being the dynamic viscosity and the thermal conductivity, respectively. Using the similarity variables in (5) gives

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M33','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M33">View MathML</a>

(13)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M34','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M34">View MathML</a> is the local Reynolds number and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M27','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M27">View MathML</a> is the local Nusselt number.

3 Numerical method

The system of boundary value problem (BVP) (7)-(10) was solved numerically via the shooting technique [28-33] by converting it into an equivalent initial value problem (IVP). In this technique, we choose a suitable finite value of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M36','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M36">View MathML</a> (where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M36','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M36">View MathML</a> corresponds to <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M38">View MathML</a>) which depends on the values of the parameters considered. First, the system of equations (7) and (8) is reduced to a first-order system (by introducing new variables) as follows:

(14)

(15)

with the boundary conditions

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M41','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M41">View MathML</a>

(16)

Now, we have a set of ‘partial’ initial conditions

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M42','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M42">View MathML</a>

The Runge-Kutta-Fehlberg method will be adopted to solve the applicable initial value problem. In order to integrate Equations (14) and (15) as an IVP, we require a value for <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M43','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M43">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M44">View MathML</a>, i.e., <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M45','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M45">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M46','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M46">View MathML</a> respectively. Since these values are not given in the boundary conditions (16), suitable guess values for <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M43','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M43">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M44">View MathML</a> are made and integration is carried out. Then, we compare the calculated values for <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M49','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M49">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M50','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M50">View MathML</a> at <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M36','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M36">View MathML</a> with the given boundary conditions <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M52','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M52">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M53','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M53">View MathML</a> respectively and adjust the estimated values of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M43','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M43">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M44">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M36','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M36">View MathML</a> to give a better approximation for the solution. This computation is done with the aid of shootlib file in Maple software. In this study, the boundary layer thickness <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M36','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M36">View MathML</a> between 2 and 8 was used in the computation, depending on the values of the parameters considered so that the boundary condition at ‘infinity’ is achieved.

4 Results and discussion

Equations (7) and (8) subject to the boundary conditions (9) and (10) were solved numerically using the shooting method with three parameters considered, namely the Prandtl number Pr, the conjugate parameter γ and the stretching parameter ε. From the numerical solution, it is known that the boundary layer thicknesses <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M36','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M36">View MathML</a> from 2 to 8 is suitable to provide accurate numerical results. Due to the decoupled boundary layer equations (7) and (8), for <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M59','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M59">View MathML</a>, it has been found that there is a unique value of the skin friction coefficient, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M60','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M60">View MathML</a>, which is in very good comparison with the classical value <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M61','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M61">View MathML</a> reported by Hiemenz [34]. Table 1 presents the comparison between the present results with the previously reported results by Wang [6] and Yacob and Ishak [23] for various values of the stretching parameter ε. It has been found that they are in good-agreement. We can conclude that this method works efficiently for the present problem, and we are also confident that the results presented here are accurate.

Table 1 . Comparison for the values of<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M43','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M43">View MathML</a>with previously published results

Figure 2 illustrates the variation of the surface temperature <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M44">View MathML</a> with ε when <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M65','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M65">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M66','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M66">View MathML</a>. To get a physically acceptable solution, ε must be greater than or equal to a critical value, say εc, i.e., <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M67','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M67">View MathML</a>. It can be seen from this figure that <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M44">View MathML</a> bounded to 1 as ε approaches the critical value <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M69','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M69">View MathML</a>.

thumbnail Figure 2 . Variation of the plate temperature<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M70','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M70">View MathML</a>withεwhen<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M71','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M71">View MathML</a>and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M72','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M72">View MathML</a>.

Figure 3 shows the variation of the surface temperature <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M44">View MathML</a> with the Prandtl number Pr, when <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M74','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M74">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M75','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M75">View MathML</a>. It is noticed that the increasing value of the Prandtl number caused the decrease of surface temperature <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M44">View MathML</a>. From Figures 2 and 3, the same trend is observed for the variation of the surface temperature, i.e., the surface temperature increases as γ increases.

thumbnail Figure 3 . Variation of the plate temperature<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M70','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M70">View MathML</a>with Prandtl numberPrwhen<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M78','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M78">View MathML</a>and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M79','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M79">View MathML</a>.

Figure 4 presents the temperature profiles for various values of Pr. It has been found that as Pr increases, the temperature in the boundary layer decreases, and the thermal boundary layer thickness also decreases. This is because for small values of the Prandtl number, the fluid is highly thermal conductive. Physically, if Pr increases, the thermal diffusivity decreases, and this phenomenon leads to the decreasing of energy ability that reduces the thermal boundary layer.

thumbnail Figure 4 . Temperature profiles<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M80','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M80">View MathML</a>for various values ofPrwhen<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M81','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M81">View MathML</a>and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M78','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M78">View MathML</a>(CBC).

The temperature profiles with various values of ε are presented in Figure 5, and it has been found again that as ε increases, the temperature decreases, and the thermal boundary layer thickness also decreases, similar to the results presented in Figure 4. The temperature profiles presented in Figure 6 show that the temperature increases as the conjugate parameter increases, in contrast with the results presented in Figures 4 and 5 for the variation of Pr and ε.

thumbnail Figure 5 . Temperature profiles<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M80','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M80">View MathML</a>for various values ofεwhen<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M81','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M81">View MathML</a>and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M71','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M71">View MathML</a>(CBC).

thumbnail Figure 6 . Temperature profiles<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M80','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M80">View MathML</a>for various values ofγwhen<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M78','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M78">View MathML</a>and<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M71','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M71">View MathML</a>(CBC).

Lastly, Figure 7 shows the velocity profiles for different values of ε which produce <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M89','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M89">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M90','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M90">View MathML</a> as <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M38">View MathML</a>. When <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M92','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M92">View MathML</a>, the flow has an inverted boundary layer structure and the thickness of the boundary layer decreases with ε. On the other hand, when <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M93','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M93">View MathML</a>, the flow has a boundary layer structure, which results from the fact that when <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M94','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M94">View MathML</a>, the external velocity ax of the surface exceeds the velocity bx of the stretching sheet. For this case, the thickness of the boundary layer increases with the increase of ε.

thumbnail Figure 7 . Velocity profiles<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M95','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M95">View MathML</a>for various values ofε.

5 Conclusion

In this paper, we have theoretically and numerically studied the problem of stagnation point flow over a stretching sheet with the convective boundary condition. It is shown how the Prandtl number Pr, stretching parameter εand conjugate parameter γ affect the values of the surface temperature <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M44">View MathML</a> and skin friction coefficient <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M97','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M97">View MathML</a>.

We can conclude that the thermal boundary layer thickness depends strongly on these three parameters. Further, it is seen that an increase in the Prandtl number Pr and stretching parameter εresults in a decrease of the temperature. The reason is that smaller values of Pr are equivalent to increasing thermal conductivity and therefore, heat is capable of diffusing away from the heated wall more rapidly than at higher values of Pr. However, the increase of conjugate parameter γ leads to an increase of the surface temperature <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/4/mathml/M44">View MathML</a>.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors declare that the study was realized in collaboration with the same engagement.

Acknowledgements

The authors wish to thank the anonymous reviewers for their valuable comments and suggestions. The financial support received from the Universiti Malaysia Pahang (Project Codes: RDU110108 and RDU110390) and the Universiti Kebangsaan Malaysia (Project Code: DIP-2012-31) is gratefully acknowledged.

References

  1. Sakiadis, BC: Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow . AIChE J.. 7(1), 26–28 (1961). Publisher Full Text OpenURL

  2. Tsou, FK, Sparrow, EM, Goldstein, RJ: Flow and heat transfer in the boundary layer on a continuous moving surface . Int. J. Heat Mass Transf.. 10(2), 219–235 (1967). Publisher Full Text OpenURL

  3. Crane, LJ: Flow past a stretching plate . Z. Angew. Math. Phys.. 21, 645–647 (1970). Publisher Full Text OpenURL

  4. Gupta, PS, Gupta, AS: Heat and mass transfer on a stretching sheet with suction or blowing . Can. J. Chem. Eng.. 55(6), 744–746 (1977). Publisher Full Text OpenURL

  5. Chen, CK, Char, M: Heat transfer on a continuous, stretching surface with suction and blowing . J. Math. Anal. Appl.. 135, 568–580 (1988). Publisher Full Text OpenURL

  6. Wang, CY: Stagnation flow towards a shrinking sheet . Int. J. Non-Linear Mech.. 43(5), 377–382 (2008). Publisher Full Text OpenURL

  7. Ishak, A, Nazar, R, Pop, I: Mixed convection on the stagnation point flow toward a vertical, continuously stretching sheet . J. Heat Transf.. 129(8), 1087–1090 (2007). Publisher Full Text OpenURL

  8. Ishak, A, Nazar, R, Pop, I: Post stagnation point boundary layer flow and mixed convection heat transfer over a vertical, linearly stretching sheet . Arch. Mech.. 60, 303–322 (2008)

  9. Ishak, A, Jafar, K, Nazar, R, Pop, I: MHD stagnation point flow towards a stretching sheet . Phys. A, Stat. Mech. Appl.. 388(17), 3377–3383 (2009). Publisher Full Text OpenURL

  10. Mohamed, MKA, Salleh, MZ, Nazar, R, Ishak, A: Stagnation point flow over a stretching sheet with Newtonian heating . Sains Malays.. 41(11), 1467–1473 (2012)

  11. Hayat, T, Iqbal, Z, Mustafa, M: Flow of a second grade fluid over a stretching surface with Newtonian heating . J. Mech.. 28(1), 209–216 (2012). Publisher Full Text OpenURL

  12. Merkin, JH: Natural-convection boundary-layer flow on a vertical surface with Newtonian heating . Int. J. Heat Fluid Flow. 15(5), 392–398 (1994). Publisher Full Text OpenURL

  13. Luikov, AV, Aleksashenko, VA, Aleksashenko, AA: Analytical methods of solution of conjugated problems in convective heat transfer . Int. J. Heat Mass Transf.. 14(8), 1047–1056 (1971). Publisher Full Text OpenURL

  14. Aziz, A: A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition . Commun. Nonlinear Sci. Numer. Simul.. 14(4), 1064–1068 (2009). Publisher Full Text OpenURL

  15. Rashidi, MM, Erfani, E: A novel analytical solution of the thermal boundary-layer over a flat plate with a convective surface boundary condition using DTM-Pade . 2009 International Conference on Signal Processing Systems (2009)

  16. Magyari, E: Comment on ‘A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition’ by A. Aziz, Comm. Nonlinear Sci. Numer. Simul. 2009, 14:1064-1068 . Commun. Nonlinear Sci. Numer. Simul.. 16, 599–601 (2010)

  17. Makinde, OD, Aziz, A: MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition . Int. J. Therm. Sci.. 49(9), 1813–1820 (2010). Publisher Full Text OpenURL

  18. Ishak, A: Similarity solutions for flow and heat transfer over a permeable surface with convective boundary condition . Appl. Math. Comput.. 217(2), 837–842 (2010). Publisher Full Text OpenURL

  19. Ishak, A, Yacob, N, Bachok, N: Radiation effects on the thermal boundary layer flow over a moving plate with convective boundary condition . Meccanica. 46(4), 795–801 (2011). Publisher Full Text OpenURL

  20. Merkin, JH, Pop, I: The forced convection flow of a uniform stream over a flat surface with a convective surface boundary condition . Commun. Nonlinear Sci. Numer. Simul.. 16(9), 3602–3609 (2011). Publisher Full Text OpenURL

  21. Yao, S, Fang, T, Zhong, Y: Heat transfer of a generalized stretching/shrinking wall problem with convective boundary conditions . Commun. Nonlinear Sci. Numer. Simul.. 16(2), 752–760 (2011). Publisher Full Text OpenURL

  22. Yacob, NA, Ishak, A, Pop, I, Vajravelu, K: Boundary layer flow past a stretching/shrinking surface beneath an external uniform shear flow with a convective surface boundary condition in a nanofluid . Nanoscale Res. Lett.. 6(1), 1–7 (2011)

  23. Yacob, NA, Ishak, A: Stagnation point flow towards a stretching/shrinking sheet in a micropolar fluid with a convective surface boundary condition . Can. J. Chem. Eng.. 90(3), 621–626 (2012). Publisher Full Text OpenURL

  24. Kimura, S, Kiwata, T, Okajima, A, Pop, I: Conjugate natural convection in porous media . Adv. Water Resour.. 20, 111–126 (1997). Publisher Full Text OpenURL

  25. Martynenko, OG, Khramtsov, PP: Free Convective Heat Transfer, Springer, Berlin (2005)

  26. Salleh, MZ, Mohamed, N, Khairuddin, R, Khasi’ie, NS, Nazar, R: Numerical study of free convection boundary layer flow on a vertical surface with prescribed wall temperature, heat flux and Newtonian heating using shooting method . UMP, Kuantan, 19-21 October 2009. (2009)

  27. Salleh, MZ, Nazar, R, Pop, I: Boundary layer flow and heat transfer over a stretching sheet with Newtonian heating . J. Taiwan Inst. Chem. Eng.. 41(6), 651–655 (2010). PubMed Abstract | Publisher Full Text OpenURL

  28. Bailey, PB, Shampine, LF, Waltman, PE: Nonlinear Two Point Boundary Value Problems, Academic Press, New York (1968)

  29. Meade, DB, Haran, BS, White, RE: The shooting technique for the solution of two-point boundary value problems . Maple Technol.. 3, 85–93 (1996)

  30. Bhattacharyya, K, Layek, GC: Effects of suction/blowing on steady boundary layer stagnation-point flow and heat transfer towards a shrinking sheet with thermal radiation . Int. J. Heat Mass Transf.. 54, 302–307 (2011). Publisher Full Text OpenURL

  31. Bhattacharyya, K, Mukhopadhyay, S, Layek, GC: Slip effects on boundary layer stagnation-point flow and heat transfer towards a shrinking sheet . Int. J. Heat Mass Transf.. 54, 308–313 (2011). Publisher Full Text OpenURL

  32. Ishak, A: Thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effect . Meccanica. 45, 367–373 (2010). Publisher Full Text OpenURL

  33. Bachok, N, Ishak, A, Pop, I: Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet . Phys. Lett. A. 374, 4075–4079 (2010). Publisher Full Text OpenURL

  34. Hiemenz, K: Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder . Dinglers Polytech. J.. 32, 321–410 (1911)