SpringerOpen Newsletter

Receive periodic news and updates relating to SpringerOpen.

Open Access Research

On the solutions and conservation laws of the ( 1 + 1 ) -dimensional higher-order Broer-Kaup system

Chaudry Masood Khalique

Author affiliations

International Institute for Symmetry Analysis and Mathematical Modelling, Department of Mathematical Sciences, North-West University, Mafikeng Campus, Private Bag X 2046, Mmabatho, 2735, Republic of South Africa

Citation and License

Boundary Value Problems 2013, 2013:41  doi:10.1186/1687-2770-2013-41

The electronic version of this article is the complete one and can be found online at: http://www.boundaryvalueproblems.com/content/2013/1/41


Received:12 September 2012
Accepted:8 February 2013
Published:28 February 2013

© 2013 Khalique; licensee Springer

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper we obtain exact solutions of the <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1">View MathML</a>-dimensional higher-order Broer-Kaup system which was obtained from the Kadomtsev-Petviashvili equation by the symmetry constraints. The methods used to determine the exact solutions of the underlying system are the Lie group analysis and the simplest equation method. The solutions obtained are the solitary wave solutions. Moreover, we derive the conservation laws of the <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1">View MathML</a>-dimensional higher-order Broer-Kaup system by employing the multiplier approach and the new conservation theorem.

Keywords:
the <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1">View MathML</a>-dimensional higher-order Broer-Kaup system; integrability; Lie group analysis; simplest equation method; solitary waves; conservation laws

1 Introduction

In this paper we study the <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1">View MathML</a>-dimensional higher-order Broer-Kaup system

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M6','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M6">View MathML</a>

(1.1a)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M7','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M7">View MathML</a>

(1.1b)

which was first introduced by Lou and Hu [1] by considering the symmetry constraints of the Kadomtsev-Petviashvili equation. The system (1.1a) and (1.1b) is in fact an extension of the well-known <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1">View MathML</a>-dimensional Broer-Kaup system [2-4]

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M9','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M9">View MathML</a>

(1.2a)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M10','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M10">View MathML</a>

(1.2b)

which is used to model the bi-directional propagation of long waves in shallow water. In [5], Fan derived a unified Darboux transformation for the system (1.1a) and (1.1b) with the help of a gauge transformation of the spectral problem and as an application obtained some new explicit soliton-like solutions. Recently, Huang et al.[6] presented a new N-fold Darboux transformations of the <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1">View MathML</a>-dimensional higher-order Broer-Kaup system with the help of a gauge transformation of the spectral problem and found new explicit multi-soliton solutions of the system (1.1a) and (1.1b).

In the latter half of the nineteenth century, Sophus Lie (1842-1899) developed one of the most powerful methods to determine solutions of differential equations. This method, known as the Lie group analysis method, systematically unifies and extends well-known ad hoc techniques to construct explicit solutions of differential equations. It has proved to be a versatile tool for solving nonlinear problems described by the differential equations arising in mathematics, physics and in other scientific fields of study. For the theory and application of the Lie group analysis methods, see, e.g., the Refs. [7-12].

Conservation laws play a vital role in the solution process of differential equations. Finding conservation laws of the system of differential equations is often the first step towards finding the solution [7]. Also, the conservation laws are useful in the numerical integration of partial differential equations [13], for example, to control numerical errors. The determination of conservation laws of the Korteweg de Vries equation, in fact, initiated the discovery of a number of methods to solve evolutionary equations [14]. Moreover, conservation laws play an important role in the theories of non-classical transformations [15,16], normal forms and asymptotic integrability [17]. Recently, in [18] the conserved quantity was used to determine the unknown exponent in the similarity solution which cannot be obtained from the homogeneous boundary conditions.

In this paper, we use the Lie group analysis approach along with the simplest equation method to obtain exact solutions of the <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1">View MathML</a>-dimensional higher-order Broer-Kaup system (1.1a) and (1.1b). Furthermore, conservation laws will be computed for (1.1a) and (1.1b) using the two approaches: the new conservation theorem due to Ibragimov [19] and the multiplier method [20,21].

2 Symmetry reductions and exact solutions of (1.1a) and (1.1b)

The symmetry group of the <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1">View MathML</a>-dimensional higher-order Broer-Kaup system (1.1a) and (1.1b) will be generated by the vector field of the form

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M14','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M14">View MathML</a>

Applying the third prolongation <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M15','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M15">View MathML</a>[11] to (1.1a) and (1.1b) and solving the resultant overdetermined system of linear partial differential equations one obtains the following three Lie point symmetries:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M16','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M16">View MathML</a>

2.1 One-dimensional optimal system of subalgebras

In this subsection we present an optimal system of one-dimensional subalgebras for the system (1.1a) and (1.1b) to obtain an optimal system of group-invariant solutions. The method which we use here for obtaining a one-dimensional optimal system of subalgebras is that given in [11]. The adjoint transformations are given by

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M17','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M17">View MathML</a>

Here <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M18','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M18">View MathML</a> is the commutator given by

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M19','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M19">View MathML</a>

The commutator table of the Lie point symmetries of the system (1.1a) and (1.1b) and the adjoint representations of the symmetry group of (1.1a) and (1.1b) on its Lie algebra are given in Table 1 and Table 2, respectively. Table 1 and Table 2 are used to construct an optimal system of one-dimensional subalgebras for the system (1.1a) and (1.1b).

Table 1. Commutator table of the Lie algebra of the system (1.1a) and (1.1b)

Table 2. Adjoint table of the Lie algebra of the system (1.1a) and (1.1b)

From Tables 1 and 2 one can obtain an optimal system of one-dimensional subalgebras given by <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M45','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M45">View MathML</a>.

2.2 Symmetry reductions of (1.1a) and (1.1b)

In this subsection we use the optimal system of one-dimensional subalgebras calculated above to obtain symmetry reductions that transform (1.1a) and (1.1b) into a system of ordinary differential equations (ODEs). Later, in the next subsection, we will look for exact solutions of (1.1a) and (1.1b).

Case 1. <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M46','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M46">View MathML</a>

The symmetry <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M47','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M47">View MathML</a> gives rise to the group-invariant solution

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M48','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M48">View MathML</a>

(2.1)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M49','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M49">View MathML</a> is an invariant of the symmetry <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M46','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M46">View MathML</a>. Substitution of (2.1) into (1.1a) and (1.1b) results in the system of ODEs

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M51','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M51">View MathML</a>

(2.2a)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M52','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M52">View MathML</a>

(2.2b)

Case 2. <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M25','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M25">View MathML</a>

The symmetry <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M25','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M25">View MathML</a> gives rise to the group-invariant solution of the form

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M55','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M55">View MathML</a>

(2.3)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M56','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M56">View MathML</a> is an invariant of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M25','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M25">View MathML</a> and the functions F and G satisfy the following system of ODEs:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M58','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M58">View MathML</a>

Case 3. <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M27','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M27">View MathML</a>

By solving the corresponding Lagrange system for the symmetry <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M27','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M27">View MathML</a>, one obtains an invariant <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M61','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M61">View MathML</a> and the group-invariant solution of the form

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M62','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M62">View MathML</a>

(2.4)

where the functions F and G satisfy the following system of ODEs:

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M63','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M63">View MathML</a>

2.3 Exact solutions using the simplest equation method

In this subsection we use the simplest equation method, which was introduced by Kudryashov [22,23] and modified by Vitanov [24] (see also [25]), to solve the ODE system (2.2a) and (2.2b), and as a result we will obtain the exact solutions of our <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1">View MathML</a>-dimensional higher-order Broer-Kaup system (1.1a) and (1.1b). Bernoulli and Riccati equations will be used as the simplest equations.

Let us consider the solutions of the ODE system (2.2a) and (2.2b) in the form

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M65','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M65">View MathML</a>

(2.5)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M66','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M66">View MathML</a> satisfies the Bernoulli and Riccati equations, M is a positive integer that can be determined by balancing procedure as in [24] and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M67','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M67">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M68','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M68">View MathML</a> are parameters to be determined. It is well known that the Bernoulli and Riccati equations are nonlinear ODEs whose solutions can be written in terms of elementary functions.

We consider the Bernoulli equation

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M69','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M69">View MathML</a>

(2.6)

where a and b are constants. Its solution is given by

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M70','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M70">View MathML</a>

where C is a constant of integration.

For the Riccati equation

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M71','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M71">View MathML</a>

(2.7)

where a, b and c are constants, we will use the solutions

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M72','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M72">View MathML</a>

and

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M73','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M73">View MathML</a>

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M74','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M74">View MathML</a> and C is a constant of integration.

2.3.1 Solutions of (1.1a) and (1.1b) using the Bernoulli equation as the simplest equation

The balancing procedure [24] yields <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M75','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M75">View MathML</a>, so the solutions of (2.2a) and (2.2b) are of the form

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M76','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M76">View MathML</a>

(2.8)

Substituting (2.8) into (2.2a) and (2.2b) and making use of (2.6) and then equating all coefficients of the functions <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M77','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M77">View MathML</a> to zero, we obtain an algebraic system of equations in terms of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M78','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M78">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M79','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M79">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M80','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M80">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M81','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M81">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M82','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M82">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M83','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M83">View MathML</a>. Solving the system of algebraic equations with the aid of Mathematica, we obtain the following cases.

Case 1

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M84','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M84">View MathML</a>

Thus, a solution of our <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1">View MathML</a>-dimensional higher-order Broer-Kaup system (1.1a) and (1.1b) is

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M86','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M86">View MathML</a>

(2.9a)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M87','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M87">View MathML</a>

(2.9b)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M49','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M49">View MathML</a> and C is a constant of integration.

Case 2

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M89','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M89">View MathML</a>

and so a solution of the <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1">View MathML</a>-dimensional higher-order Broer-Kaup system (1.1a) and (1.1b) is

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M91','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M91">View MathML</a>

(2.10a)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M92','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M92">View MathML</a>

(2.10b)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M49','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M49">View MathML</a> and C is a constant of integration.

2.3.2 Solutions of (1.1a) and (1.1b) using Riccati equation as the simplest equation

The balancing procedure yields <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M75','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M75">View MathML</a>, so the solutions of the ODE system (2.2a) and (2.2b) are of the form

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M95','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M95">View MathML</a>

(2.11)

Substituting (2.11) into (2.2a) and (2.2b) and making use of (2.7), we obtain an algebraic system of equations in terms of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M78','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M78">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M79','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M79">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M80','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M80">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M81','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M81">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M82','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M82">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M83','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M83">View MathML</a> by equating all coefficients of the functions <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M77','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M77">View MathML</a> to zero. Solving the algebraic equations, one obtains the following cases.

Case 1

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M103','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M103">View MathML</a>

and hence the solutions of the <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1">View MathML</a>-dimensional higher-order Broer-Kaup system (1.1a) and (1.1b) are

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M105','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M105">View MathML</a>

(2.12a)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M106','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M106">View MathML</a>

(2.12b)

and

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M107','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M107">View MathML</a>

(2.13a)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M108','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M108">View MathML</a>

(2.13b)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M49','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M49">View MathML</a> and C is a constant of integration.

Case 2

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M110','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M110">View MathML</a>

In this case the solutions of the <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1">View MathML</a>-dimensional higher-order Broer-Kaup system (1.1a) and (1.1b) are given by

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M112','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M112">View MathML</a>

(2.14a)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M113','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M113">View MathML</a>

(2.14b)

and

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M114','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M114">View MathML</a>

(2.15a)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M115','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M115">View MathML</a>

(2.15b)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M49','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M49">View MathML</a> and C is a constant of integration.

Case 3

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M117','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M117">View MathML</a>

The solutions in this case are

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M118','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M118">View MathML</a>

(2.16a)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M119','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M119">View MathML</a>

(2.16b)

and

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M120','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M120">View MathML</a>

(2.17a)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M121','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M121">View MathML</a>

(2.17b)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M49','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M49">View MathML</a> and C is a constant of integration.

Case 4

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M123','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M123">View MathML</a>

and so the solutions are

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M124','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M124">View MathML</a>

(2.18a)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M125','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M125">View MathML</a>

(2.18b)

and

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M126','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M126">View MathML</a>

(2.19a)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M127','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M127">View MathML</a>

(2.19b)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M49','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M49">View MathML</a> and C is a constant of integration.

Case 5

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M129','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M129">View MathML</a>

The solutions are

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M130','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M130">View MathML</a>

(2.20a)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M131','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M131">View MathML</a>

(2.20b)

and

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M132','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M132">View MathML</a>

(2.21a)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M133','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M133">View MathML</a>

(2.21b)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M49','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M49">View MathML</a> and C is a constant of integration.

A profile of the solution (2.21a) and (2.21b) is given in Figure 1.

thumbnailFigure 1. Profile of solitary waves (2.21a) and (2.21b).

3 Conservation laws of (1.1a) and (1.1b)

In this section, we derive conservation laws for the <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1">View MathML</a>-dimensional higher-order Broer-Kaup system (1.1a) and (1.1b). Two different approaches will be used. Firstly, we use the new conservation method due to Ibragimov [19] and then employ the multiplier method [20,21]. We now present some preliminaries that we will need later in this section.

3.1 Preliminaries

In this subsection we briefly present the notation and pertinent results which we utilize below. For details the reader is referred to [8-10,19-21,27].

3.1.1 Fundamental operators and their relationship

Consider a kth-order system of PDEs of n independent variables <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M136','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M136">View MathML</a> and m dependent variables <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M137','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M137">View MathML</a>

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M138','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M138">View MathML</a>

(3.1)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M139','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M139">View MathML</a> denote the collections of all first, second, …, kth-order partial derivatives, that is, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M140','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M140">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M141','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M141">View MathML</a>, …, respectively, with the total derivative operator with respect to <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M142','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M142">View MathML</a> given by

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M143','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M143">View MathML</a>

(3.2)

where the summation convention is used whenever appropriate.

The Euler-Lagrange operator, for each α, is given by [8-10]

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M144','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M144">View MathML</a>

(3.3)

and the Lie-Bäcklund operator is

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M145','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M145">View MathML</a>

(3.4)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M146','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M146">View MathML</a> is the space of differential functions. The operator (3.4) is an abbreviated form of the infinite formal sum

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M147','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M147">View MathML</a>

(3.5)

where the additional coefficients are determined uniquely by the prolongation formulae

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M148','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M148">View MathML</a>

(3.6)

in which <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M149','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M149">View MathML</a> is the Lie characteristic function given by

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M150','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M150">View MathML</a>

(3.7)

The Lie-Bäcklund operator (3.5) can be written in a characteristic form as

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M151','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M151">View MathML</a>

(3.8)

The Noether operators associated with the Lie-Bäcklund symmetry operator X are given by

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M152','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M152">View MathML</a>

(3.9)

where the Euler-Lagrange operators with respect to derivatives of <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M153','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M153">View MathML</a> are obtained from (3.3) by replacing <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M153','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M153">View MathML</a> by the corresponding derivatives. For example,

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M155','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M155">View MathML</a>

(3.10)

and the Euler-Lagrange , Lie-Bäcklund and Noether operators are connected by the operator identity

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M156','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M156">View MathML</a>

(3.11)

The n-tuple vector <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M157','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M157">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M158','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M158">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M159','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M159">View MathML</a>, is a conserved vector of (3.1) if <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M160','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M160">View MathML</a> satisfies

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M161','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M161">View MathML</a>

(3.12)

The equation (3.12) defines a local conservation law of the system (3.1).

3.1.2 Multiplier method

A multiplier <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M162','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M162">View MathML</a> has the property that

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M163','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M163">View MathML</a>

(3.13)

hold identically. We consider multipliers of the third-order, that is,

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M164','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M164">View MathML</a>

The right-hand side of (3.13) is a divergence expression. The determining equation for the multiplier <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M165','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M165">View MathML</a> is

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M166','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M166">View MathML</a>

(3.14)

The conserved vectors are calculated via a homotopy formula [20,21,26] once the multipliers are obtained.

3.1.3 Variational method for a system and its adjoint

A system of adjoint equations for the system of kth-order differential equations (3.1) is defined by [27]

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M167','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M167">View MathML</a>

(3.15)

where

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M168','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M168">View MathML</a>

(3.16)

and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M169','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M169">View MathML</a> are new dependent variables.

The following results are given in Ibragimov [19] and recalled here.

Assume that the system of equations (3.1) admits the symmetry generator

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M170','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M170">View MathML</a>

(3.17)

Then the system of adjoint equations (3.15) admits the operator

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M171','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M171">View MathML</a>

(3.18)

where the operator (3.18) is an extension of (3.17) to the variable <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M172','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M172">View MathML</a> and the <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M173','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M173">View MathML</a> are obtainable from

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M174','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M174">View MathML</a>

(3.19)

Theorem 1[19]

Every Lie point, Lie-Bäcklund and nonlocal symmetry (3.17) admitted by the system of equations (3.1) gives rise to a conservation law for the system consisting of equation (3.1) and adjoint equation (3.15), where the components<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M160','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M160">View MathML</a>of the conserved vector<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M176','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M176">View MathML</a>are determined by

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M177','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M177">View MathML</a>

(3.20)

with Lagrangian given by

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M178','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M178">View MathML</a>

(3.21)

3.2 Construction of conservation laws for (1.1a) and (1.1b)

We now construct conservation laws for the <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1">View MathML</a>-dimensional higher-order Broer-Kaup system (1.1a) and (1.1b) using the two approaches.

3.2.1 Application of the multiplier method

For the <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1">View MathML</a>-dimensional higher-order Broer-Kaup system (1.1a) and (1.1b), after some lengthy calculations, we obtain the third-order multipliers

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M181','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M181">View MathML</a>

and

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M182','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M182">View MathML</a>

that are given by

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M183','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M183">View MathML</a>

(3.22)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M184','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M184">View MathML</a>

(3.23)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M185','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M185">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M186','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M186">View MathML</a> are arbitrary constants. Corresponding to the above multipliers, we obtain the following seven local conserved vectors of the <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1">View MathML</a>-dimensional higher-order Broer-Kaup system (1.1a) and (1.1b):

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M188','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M188">View MathML</a>

Remark 1 Higher-order conservation laws of (1.1a) and (1.1b) can be computed by increasing the order of multipliers.

3.2.2 Application of the new conservation theorem

The adjoint equations of (1.1a) and (1.1b), by invoking (3.16), are given by

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M189','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M189">View MathML</a>

(3.24a)

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M190','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M190">View MathML</a>

(3.24b)

where <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M191','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M191">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M192','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M192">View MathML</a> are the new dependent variables. By recalling (3.21), we get the following Lagrangian for the system of equations (1.1a) and (1.1b) and (3.24a) and (3.24b):

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M193','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M193">View MathML</a>

(3.25)

Because of the three Lie point symmetries of the <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1">View MathML</a>-dimensional higher-order Broer-Kaup system (1.1a) and (1.1b), we have the following three cases to consider:

(i) We first consider the Lie point symmetry generator <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M195','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M195">View MathML</a> of the <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1">View MathML</a>-dimensional higher-order Broer-Kaup system (1.1a) and (1.1b). Corresponding to this symmetry, the Lie characteristic function is <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M197','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M197">View MathML</a>. Thus, by using (3.20), the components of the conserved vector are given by

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M198','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M198">View MathML</a>

(ii) The Lie point symmetry generator <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M199','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M199">View MathML</a> has the Lie characteristic function <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M200','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M200">View MathML</a>. Hence using (3.20), one can obtain the conserved vector whose components are

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M201','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M201">View MathML</a>

(iii) Finally, we consider the symmetry generator <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M202','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M202">View MathML</a>. For this case, the Lie characteristic function <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M203','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M203">View MathML</a>, and by using (3.20), the components of the conserved vector are given by

<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M204','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M204">View MathML</a>

Remark 2 The components of the conserved vectors contain the arbitrary solutions ϕ and ψ of adjoint equations (3.24a) and (3.24b), and hence one can obtain an infinite number of conservation laws.

4 Concluding remarks

In this paper we have studied the <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1">View MathML</a>-dimensional higher-order Broer-Kaup system (1.1a) and (1.1b). Similarity reductions and exact solutions, with the aid of the simplest equation method, were obtained based on optimal systems of one-dimensional subalgebras for the underlying system. We have verified the correctness of the solutions obtained here by substituting them back into the system (1.1a) and (1.1b). Furthermore, conservation laws for the system (1.1a) and (1.1b) were derived by using the multiplier method and the new conservation theorem.

Competing interests

The author declares that he has no competing interests.

Acknowledgements

This paper is dedicated to Prof. Ravi P. Agarwal on the occasion of his 65th birthday.

CMK would like to thank the Organizing Committee of ‘International Conference on Applied Analysis and Algebra (ICAAA2012)’ for their kind hospitality during the conference.

References

  1. Lou, SY, Hu, XB: Infinitely many Lax pairs and symmetry constraints of the KP equation. J. Math. Phys.. 38, 6401–6427 (1997). Publisher Full Text OpenURL

  2. Broer, LJF: Approximate equations for long water waves. Appl. Sci. Res.. 31, 377–395 (1975). Publisher Full Text OpenURL

  3. Kaup, DJ: A higher-order water wave equation and the method for solving it. Prog. Theor. Phys.. 54, 396–408 (1975). Publisher Full Text OpenURL

  4. Kaup, DJ: Finding eigenvalue problems for solving nonlinear evolution equations. Prog. Theor. Phys.. 54, 72–78 (1975). Publisher Full Text OpenURL

  5. Fan, EG: Solving Kadomtsev-Petviashvili equation via a new decomposition and Darboux transformation. Commun. Theor. Phys.. 37, 145–148 (2002)

  6. Huang, D, Li, D, Zhang, H: Explicit N-fold Darboux transformation and multi-soliton solutions for the <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/41/mathml/M1">View MathML</a>-dimensional higher-order Broer-Kaup system. Chaos Solitons Fractals. 33, 1677–1685 (2007). Publisher Full Text OpenURL

  7. Bluman, GW, Kumei, S: Symmetries and Differential Equations, Springer, New York (1989)

  8. Ibragimov, NH: CRC Handbook of Lie Group Analysis of Differential Equations, CRC Press, Boca Raton (1994)

  9. Ibragimov, NH: CRC Handbook of Lie Group Analysis of Differential Equations, CRC Press, Boca Raton (1995)

  10. Ibragimov, NH: CRC Handbook of Lie Group Analysis of Differential Equations, CRC Press, Boca Raton (1995)

  11. Olver, PJ: Applications of Lie Groups to Differential Equations, Springer, Berlin (1993)

  12. Ovsiannikov, LV: Group Analysis of Differential Equations, Academic Press, New York (1982)

  13. Leveque, RJ: Numerical Methods for Conservation Laws, Birkhäuser, Basel (1992)

  14. Newell, AC: The history of the soliton. J. Appl. Mech.. 50, 1127–1137 (1983). Publisher Full Text OpenURL

  15. Mikhailov, AV, Shabat, AB, Yamilov, RI: On an extension of the module of invertible transformations. Sov. Math. Dokl.. 295, 288–291 (1987)

  16. Mikhailov, AV, Shabat, AB, Yamilov, RI: Extension of the module of invertible transformations and classification of integrable systems. Commun. Math. Phys.. 115, 1–19 (1988). Publisher Full Text OpenURL

  17. Kodama, Y, Mikhailov, AV: Obstacles to asymptotic integrability. In: Gelfand IM, Fokas A (eds.) Algebraic Aspects of Integrability, pp. 173–204. Birkhäuser, Basel (1996)

  18. Naz, R, Mahomed, FM, Mason, DP: Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics. Appl. Math. Comput.. 205, 212–230 (2008). Publisher Full Text OpenURL

  19. Ibragimov, NH: A new conservation theorem. J. Math. Anal. Appl.. 333, 311–328 (2007). Publisher Full Text OpenURL

  20. Anco, SC, Bluman, GW: Direct construction method for conservation laws of partial differential equations. Part I: examples of conservation law classifications. Eur. J. Appl. Math.. 13, 545–566 (2002)

  21. Hereman, W: Symbolic computation of conservation laws of nonlinear partial differential equations in multi-dimensions. Int. J. Quant. Chem.. 106, 278–299 (2006). Publisher Full Text OpenURL

  22. Kudryashov, NA: Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos Solitons Fractals. 24, 1217–1231 (2005). Publisher Full Text OpenURL

  23. Kudryashov, NA: Exact solitary waves of the Fisher equation. Phys. Lett. A. 342, 99–106 (2005). Publisher Full Text OpenURL

  24. Vitanov, NK: Application of simplest equations of Bernoulli and Riccati kind for obtaining exact traveling-wave solutions for a class of PDEs with polynomial nonlinearity. Commun. Nonlinear Sci. Numer. Simul.. 15, 2050–2060 (2010). Publisher Full Text OpenURL

  25. Vitanov, NK, Dimitrova, ZI: Application of the method of simplest equation for obtaining exact traveling-wave solutions for two classes of model PDEs from ecology and population dynamics. Commun. Nonlinear Sci. Numer. Simul.. 15, 2836–2845 (2010). Publisher Full Text OpenURL

  26. Anthonyrajah, M, Mason, DP: Conservation laws and invariant solutions in the Fanno model for turbulent compressible flow. Math. Comput. Appl.. 15, 529–542 (2010)

  27. Atherton, RW, Homsy, GM: On the existence and formulation of variational principles for nonlinear differential equations. Stud. Appl. Math.. 54, 31–60 (1975)