Abstract
In this paper, we make use of the four functionals fixed point theorem to verify the existence of at least one symmetric positive solution of a secondorder mpoint boundary value problem on time scales such that the considered equation admits a nonlinear term f whose sign is allowed to change. The discussed problem involves both an increasing homeomorphism and homomorphism, which generalizes the pLaplacian operator. An example which supports our theoretical results is also indicated.
MSC: 34B10, 39A10.
Keywords:
symmetric positive solution; fixedpoint theorem; time scales; mpoint boundary value problem; increasing homeomorphism and homomorphism1 Introduction
The theory of time scales was introduced by Stefan Hilger [1] in his PhD thesis in 1988 in order to unify continuous and discrete analysis. This theory was developed by Agarwal, Bohner, Peterson, Henderson, Avery, etc.[25]. Some preliminary definitions and theorems on time scales can be found in books [3,4] which are excellent references for calculus of time scales.
There have been extensive studies on a boundary value problem (BVP) with signchanging nonlinearity on time scales by using the fixed point theorem on cones. See [6,7] and references therein. In [8], Feng, Pang and Ge discussed the existence of triple symmetric positive solutions by applying the fixed point theorem of functional type in a cone.
In [9], Ji, Bai and Ge studied the following singular multipoint boundary value problem:
where , , , for . By using fixed point index theory [10] and the LeggetWilliams fixed point theorem [11], sufficient conditions for the existence of countably many positive solutions are established.
Sun, Wang and Fan [12] studied the nonlocal boundary value problem with pLaplacian of the form
where and and , for and . By using the four functionals fixed point theorem and five functionals fixed point theorem, they obtained the existence criteria of at least one positive solution and three positive solutions.
Inspired by the mentioned works, in this paper we consider the following mpoint boundary value problem with an increasing homeomorphism and homomorphism:
where is a time scale, is an increasing homeomorphism and homomorphism with . A projection is called an increasing homeomorphism and homomorphism if the following conditions are satisfied:
(ii) ϕ is a continuous bijection and its inverse mapping is also continuous;
We assume that the following conditions are satisfied:
(H2) is symmetric on (i.e., for );
(H3) symmetric on (i.e., for ) and on any subinterval of .
By using four functionals fixed point theorem [5], we establish the existence of at least one symmetric positive solution for BVP (1.1)(1.2). In particular, the nonlinear term is allowed to change sign. The remainder of this paper is organized as follows. Section 2 is devoted to some preliminary lemmas. We give and prove our main result in Section 3. Section 4 contains an illustrative example. To the best of our knowledge, symmetric positive solutions for multipoint BVP for an increasing homeomorphism and homomorphism with signchanging nonlinearity on time scales by using four functionals fixed point theorem [5] have not been considered till now. In this paper, we intend to fill in such gaps in the literature.
In this paper, a symmetric positive solution x of (1.1) and (1.2) means a solution of (1.1) and (1.2) satisfying and , .
2 Preliminaries
To prove the main result in this paper, we will employ several lemmas. These lemmas are based on the BVP
Lemma 2.1If condition (H1) holds, then for, boundary value problem (2.1) and (2.2) has a unique solution
or
Proof Suppose x is a solution of BVP (2.1), (2.2). Integrating (2.1) from 0 to t, we have
Integrating (2.6) from 0 to t, we get
or integrating the same equation from t to 1, we achieve
Using boundary condition (2.2), we get
or
On the other hand, it is easy to verify that if x is the solution of (2.3) or (2.4), then x is a solution of BVP (2.1), (2.2). The proof is accomplished. □
Lemma 2.2Ifis nonnegative onandon any subinterval of, then there exists a uniquesatisfying (2.5). Moreover, there is a uniquesuch that.
So, is continuous and strictly increasing. It is easy to see that
Therefore there exists a unique satisfying (2.5). Furthermore, let
Then is continuous and strictly increasing on and , . Thus
implies that there exists a unique such that . Lemma is proved. □
Remark 2.1 By Lemmas 2.1 and 2.2, the unique solution of BVP (2.1), (2.2) can be rewritten in the form
Lemma 2.3Let (H1) hold. Ifis nonnegative onandon any subinterval of, then the unique solutionof BVP (2.1)(2.2) has the following properties:
(iii) there exists a uniquesuch that,
Proof Suppose that is a solution of BVP (2.1)(2.2), then
(i) , is nonincreasing so is nonincreasing. This implies that is concave.
(ii) We have and . Furthermore, we get
If we continue like this, we have
Using (H1), we obtain
which implies that . Similarly,
If we continue in this way, we attain that
Using (H1), we have , . Therefore, we get , .
(iii) , imply that there is a such that .
If there exist , , such that , then
which is a contradiction.
(iv) From Lemmas 2.1 and 2.2, we have . Hence we obtain that . This implies .
The lemma is proved. □
Lemma 2.4Ifis symmetric nonnegative onandon any subinterval of, then the unique solutionof (2.1), (2.2) is concave and symmetric withon.
Proof Clearly, is concave and from Lemma 2.3. We show that is symmetric on . For the symmetry of , it is easy to see that , i.e., . Therefore, from (2.9) and for , by the transformation , we have
So, is symmetric on . The proof is accomplished. □
Let . Then E is a Banach space with the norm
We define two cones by
where . Obviously, x is a solution of BVP (2.1)(2.2) if and only if x is a fixed point of the operator F.
Lemma 2.5If (H1) holds, thenfor, where
Hence
i.e.,
The proof is finalized. □
From Lemma 2.5, we obtain
Lemma 2.6Suppose that (H1)(H3) hold, thenis completely continuous.
Proof Let . According to the definition of T and Lemma 2.3, it follows that , which implies the concavity of on . On the other hand, from the definition of f and h, holds for , i.e., Tx is symmetric on . So, . By applying the ArzelaAscoli theorem on time scales, we can obtain that is relatively compact. In view of the Lebesgue convergence theorem on time scales, it is obvious that T is continuous. Hence, is a completely continuous operator. The proof is completed. □
3 Existence of one symmetric positive solution
Let α and Ψ be nonnegative continuous concave functionals on P, and let β and θ be nonnegative continuous convex functionals on P, then for positive numbers r, j, n and R, we define the sets:
Theorem 3.1[5]
IfPis a cone in a real Banach spaceE, αand Ψ are nonnegative continuous concave functionals onP, βandθare nonnegative continuous convex functionals onPand there exist positive numbersr, j, nandRsuch that
is a completely continuous operator, andis a bounded set. If
Suppose with . For the convenience, we take the notations
and define the maps
and let , and be defined by (3.1).
Theorem 3.2Assume (H1)(H3) hold. If there exist constantsr, j, n, Rwith, and suppose thatfsatisfies the following conditions:
Then BVP (1.1)(1.2) has at least one symmetric positive solutionsuch that
Proof Boundary value problem (1.1)(1.2) has a solution if and only if x solves the operator equation . Thus we set out to verify that the operator T satisfies four functionals fixed point theorem, which will prove the existence of a fixed point of T.
We first show that is bounded and is completely continuous. For all with Lemma 2.5, we have
which means that is a bounded set. According to Lemma 2.6, it is clear that is completely continuous.
Let
Clearly, . By direct calculation,
So, , which means that (i) in Theorem 3.1 is satisfied.
For all , with and , we have from concavity
So, . Hence (ii) in Theorem 3.1 is fulfilled.
Thus (iii) and (v) in Theorem 3.1 hold true. We finally prove that (iv) in Theorem 3.1 holds.
Thus, all conditions of Theorem 3.1 are satisfied. T has a fixed point x in . Clearly, , . By condition (C3), we have , , that is, . Hence, . This means that x is a fixed point of the operator F. Therefore, BVP (1.1)(1.2) has at least one symmetric positive solution. The proof is completed. □
4 An example
Example 4.1 Let . If we choose , , , , in boundary value problem (1.1)(1.2), then we have the following BVP on time scale :
Set , . By simple calculation, we get
Choose , , and . It is easy to check that , .
So, all conditions of Theorem 3.2 hold. Thus, by Theorem 3.2, BVP (4.1) has at least one symmetric positive solution x such that
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally to the manuscript and read and approved the final manuscript.
References

Hilger, S: Analysis on measure chains  a unified approach to continuous and discrete calculus. Results Math.. 18, 18–56 (1990). Publisher Full Text

Agarwal, RP, Bohner, M: Basic calculus on time scales and some of its applications. Results Math.. 35, 3–22 (1999). Publisher Full Text

Bohner, M, Peterson, A: Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston (2001)

Bohner, M, Peterson, A: Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston (2003)

Avery, R, Henderson, J, O’Regan, D: Four functionals fixed point theorem. Math. Comput. Model.. 48, 1081–1089 (2008). Publisher Full Text

Hamal, NA, Yoruk, F: Symmetric positive solutions of fourth order integral BVP for an increasing homeomorphism and homomorphism with signchanging nonlinearity on time scales. Comput. Math. Appl.. 59, 3603–3611 (2010). Publisher Full Text

Xu, F, Meng, Z: The existence of positive solutions for thirdorder pLaplacian mpoint boundary value problems with sign changing nonlinearity on time scales. Adv. Differ. Equ.. 2009, (2009) Article ID 169321

Feng, H, Pang, H, Ge, W: Multiplicity of symmetric positive solutions for a multipoint boundary value problem with a onedimensional pLaplacian. Nonlinear Anal.. 69, 3050–3059 (2008). Publisher Full Text

Ji, D, Bai, Z, Ge, W: The existence of countably many positive solutions for singular multipoint boundary value problems. Nonlinear Anal.. 72, 955–964 (2010). Publisher Full Text

Deimling, K: Nonlinear Functional Analysis, Springer, New York (1985)

Leggett, RW, Williams, LR: Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J.. 28, 673–688 (1979). Publisher Full Text

Sun, TT, Wang, LL, Fan, YH: Existence of positive solutions to a nonlocal boundary value problem with pLaplacian on time scales. Adv. Differ. Equ.. 2010, (2010) Article ID 809497