Abstract
In this paper, we study the multiplicity of positive doubly periodic solutions for a singular semipositone telegraph equation. The proof is based on a wellknown fixed point theorem in a cone.
MSC: 34B15, 34B18.
Keywords:
semipositone telegraph equation; doubly periodic solution; singular; cone; fixed point theorem1 Introduction
Recently, the existence and multiplicity of positive periodic solutions for a scalar singular equation or singular systems have been studied by using some fixed point theorems; see [19]. In [10], the authors show that the method of lower and upper solutions is also one of common techniques to study the singular problem. In addition, the authors [11] use the continuation type existence principle to investigate the following singular periodic problem:
More recently, using a weak force condition, Wang [12] has built some existence results for the following periodic boundary value problem:
The proof is based on Schauder’s fixed point theorem. For other results concerning the existence and multiplicity of positive doubly periodic solutions for a single regular telegraph equation or regular telegraph system, see, for example, the papers [1317] and the references therein. In these references, the nonlinearities are nonnegative.
On the other hand, the authors [18] study the semipositone telegraph system
where the nonlinearities f, g may change sign. In addition, there are many authors who have studied the semipositone equations; see [19,20].
Inspired by the above references, we are concerned with the multiplicity of positive doubly periodic solutions for a general singular semipositone telegraph equation
where is a constant, is a positive parameter, , may change sign and is singular at , namely,
The main method used here is the following fixedpoint theorem of a cone mapping.
Lemma 1.1[21]
LetEbe a Banach space, andbe a cone inE. Assume, are open subsets ofEwith, , and letbe a completely continuous operator such that either
The paper is organized as follows. In Section 2, some preliminaries are given. In Section 3, we give the main result.
2 Preliminaries
Doubly 2πperiodic functions will be identified to be functions defined on . We use the notations
to denote the spaces of doubly periodic functions with the indicated degree of regularity. The space denotes the space of distributions on .
By a doubly periodic solution of Eq. (1) we mean that a satisfies Eq. (1) in the distribution sense, i.e.,
First, we consider the linear equation
Let be the differential operator
acting on functions on . Following the discussion in [14], we know that if , has the resolvent ,
where is the unique solution of Eq. (2), and the restriction of on () or is compact. In particular, is a completely continuous operator.
For , the Green function of the differential operator is explicitly expressed; see Lemma 5.2 in [14]. From the definition of , we have
For convenience, we assume the following condition holds throughout this paper:
Finally, if −ξ is replaced by in Eq. (2), the author [13] has proved the following unique existence and positive estimate result.
Lemma 2.1Let. Then Eq. (2) has a unique solution, is a linear bounded operator with the following properties:
(i) is a completely continuous operator;
(ii) If, a.e, has the positive estimate
3 Main result
Theorem 3.1Assume (H1) holds. In addition, ifsatisfies
(H4) there exists a nonnegative functionsuch that
(H5) , where the limit function,
then Eq. (1) has at least two positive doubly periodic solutions for sufficiently smallλ.
is a Banach space with the norm . Define a cone by
where . Let , . By Lemma 2.1, it is easy to obtain the following lemmas.
Lemma 3.2Ifis a nonnegative function, the linear boundary value problem
has a unique solution. The functionsatisfies the estimates
Lemma 3.3If the boundary value problem
has a solutionwith, thenis a positive doubly periodic solution of Eq. (1).
Proof of Theorem 3.1 Step 1. Define the operator T as follows:
We obtain the conclusion that , and is completely continuous.
For any , then , and T is defined. On the other hand, for , the complete continuity is obvious by Lemma 2.1. And we can have
Now we prove that the operator T has one fixed point and for all sufficiently small λ.
Since , there exists such that
Furthermore, we have . It follows that
For any and , we can verify that
Then we have
On the other hand,
By the Fatou lemma, one has
Hence, there exists a positive number such that
Hence, we have
For any , we have . On the other hand, since , we can get
From above, we can have
Therefore, by Lemma 1.1, the operator T has a fixed point and
So, Eq. (1) has a positive solution .
Step 2. By conditions (H2) and (H3), it is clear to obtain that
Let . For any , we have . Then define the operator A as follows:
It is easy to prove that , and is completely continuous.
Furthermore, for any , we have
Thus, from the above inequality, there exists such that
Since , then there is such that
where μ satisfies . For any , then we have
By Lemma 2.1, it is clear to obtain that
Therefore, by Lemma 1.1, A has a fixed point in and , which is another positive periodic solution of Eq. (1).
Finally, from Step 1 and Step 2, Eq. (1) has two positive doubly periodic solutions and for sufficiently small λ. □
Example
Consider the following problem:
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
This paper is concerned with a singular semipositone telegraph equation with a parameter and represents a somewhat interesting contribution in the investigation of the existence and multiplicity of doubly periodic solutions of the telegraph equation. All authors typed, read and approved the final manuscript.
Acknowledgements
The authors would like to thank the referees for valuable comments and suggestions for improving this paper.
References

Chu, J, Torres, PJ, Zhang, M: Periodic solutions of second order nonautonomous singular dynamical systems. J. Differ. Equ.. 239, 196–212 (2007). Publisher Full Text

Chu, J, Fan, N, Torres, PJ: Periodic solutions for second order singular damped differential equations. J. Math. Anal. Appl.. 388, 665–675 (2012). Publisher Full Text

Chu, J, Zhang, Z: Periodic solutions of second order superlinear singular dynamical systems. Acta Appl. Math.. 111, 179–187 (2010). Publisher Full Text

Chu, J, Li, M: Positive periodic solutions of Hill’s equations with singular nonlinear perturbations. Nonlinear Anal.. 69, 276–286 (2008). Publisher Full Text

Chu, J, Torres, PJ: Applications of Schauder’s fixed point theorem to singular differential equations. Bull. Lond. Math. Soc.. 39, 653–660 (2007). Publisher Full Text

Jiang, D, Chu, J, Zhang, M: Multiplicity of positive periodic solutions to superlinear repulsive singular equations. J. Differ. Equ.. 211, 282–302 (2005). PubMed Abstract  Publisher Full Text

Torres, PJ: Existence of onesigned periodic solutions of some secondorder differential equations via a Krasnoselskii fixed point theorem. J. Differ. Equ.. 190, 643–662 (2003). Publisher Full Text

Torres, PJ: Weak singularities may help periodic solutions to exist. J. Differ. Equ.. 232, 277–284 (2007). Publisher Full Text

Wang, H: Positive periodic solutions of singular systems with a parameter. J. Differ. Equ.. 249, 2986–3002 (2010). Publisher Full Text

DeCoster, C, Habets, P: Upper and lower solutions in the theory of ODE boundary value problems: classical and recent results. In: Zanolin F (ed.) Nonlinear Analysis and Boundary Value Problems for Ordinary Differential Equations CISMICMS, pp. 1–78. Springer, New York (1996)

Jebelean, P, Mawhin, J: Periodic solutions of forced dissipative pLiénard equations with singularities. Vietnam J. Math.. 32, 97–103 (2004)

Wang, F: Doubly periodic solutions of a coupled nonlinear telegraph system with weak singularities. Nonlinear Anal., Real World Appl.. 12, 254–261 (2011). Publisher Full Text

Li, Y: Positive doubly periodic solutions of nonlinear telegraph equations. Nonlinear Anal.. 55, 245–254 (2003). Publisher Full Text

Ortega, R, RoblesPerez, AM: A maximum principle for periodic solutions of the telegraph equations. J. Math. Anal. Appl.. 221, 625–651 (1998). Publisher Full Text

Wang, F, An, Y: Nonnegative doubly periodic solutions for nonlinear telegraph system. J. Math. Anal. Appl.. 338, 91–100 (2008). Publisher Full Text

Wang, F, An, Y: Existence and multiplicity results of positive doubly periodic solutions for nonlinear telegraph system. J. Math. Anal. Appl.. 349, 30–42 (2009). Publisher Full Text

Wang, F, An, Y: Nonnegative doubly periodic solutions for nonlinear telegraph system with twinparameters. Appl. Math. Comput.. 214, 310–317 (2009). Publisher Full Text

Wang, F, An, Y: On positive solutions of nonlinear telegraph semipositone system. Dyn. Contin. Discrete Impuls. Syst., Ser. A Math. Anal.. 16, 209–219 (2009)

Xu, X: Positive solutions for singular semipositone threepoint systems. Nonlinear Anal.. 66, 791–805 (2007). Publisher Full Text

Yao, Q: An existence theorem of a positive solution to a semipositone SturmLiouville boundary value problem. Appl. Math. Lett.. 23, 1401–1406 (2010). Publisher Full Text

Guo, D, Lakshmikantham, V: Nonlinear Problems in Abstract Cones, Academic Press, New York (1988)