Table 1

PSLQ runs to recover minimal polynomials satisfied by<a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/75/mathml/M326','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/75/mathml/M326">View MathML</a>
d m(d) P T <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/75/mathml/M327','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/75/mathml/M327">View MathML</a> <a onClick="popup('http://www.boundaryvalueproblems.com/content/2013/1/75/mathml/M328','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2013/1/75/mathml/M328">View MathML</a>
3 1 200 0.00
4 4 200 0.01 3.5230 0.8807
5 4 200 0.01 2.3222 0.5806
6 8 200 0.02 5.8061 0.7258
7 3 200 0.01 1.1461 0.3820
8 16 1,000 0.85 14.0644 0.8790
9 6 200 0.01 3.9187 0.6531
10 16 1,000 0.76 12.1262 0.7579
11 15 1,000 0.55 7.5230 0.5015
12 16 1,000 0.85 15.2686 0.9543
13 12 1,000 0.45 9.5690 0.7974
14 48 4,000 100.31 38.4539 0.8011
15 8 200 0.03 2.1139 0.2642
16 32 2,000 12.51 33.7985 1.0562
17 32 2,000 8.93 21.9952 0.6874
18 24 2,000 4.32 21.1366 0.8807
19 27 2,000 5.27 16.8591 0.6244
20 64 5,000 415.78 58.8250 0.9191
21 24 2,000 4.52 15.6374 0.6516
22 40 3,000 64.33 41.4566 1.0364
23 33 3,000 10.92 14.4705 0.4385
24 64 5,000 412.59 60.3300 0.9427
25 20 2,000 3.77 20.0766 1.0038
26 144 25,000 71,680.30 121.91 0.8466
27 27 2,000 5.70 18.9234 0.7009
28 48 4,000 131.29 58.4901 1.2185
29 84 6,000 1,375.38 60.0921 0.7154
30 64 5,000 557.29 56.9952 0.8906
31 45 4,000 38.89 19.8425 0.4409
33 40 4,000 81.42 32.1363 0.8034
34 128 21,300 45,993.71 123.9012 0.9680
35 72 12,000 1,179.43 41.3569 0.5744
36 96 12,000 95.3311 95.3311 0.9930
37 36 3,000 29.11 43.5933 1.2110
39 48 4,000 56.33 20.7849 0.4330
40 128 21,300 127.3572 0.9950

Here m(d) is the degree, P is the precision level in digits, T is the run time in seconds, and log10M is the size in digits of the central coefficient. Degrees in bold were obtained by Andrew Mattingly.

Bailey and Borwein

Bailey and Borwein Boundary Value Problems 2013 2013:75   doi:10.1186/1687-2770-2013-75

Open Data