Skip to main content

Some existence theorems for fractional integro-differential equations and inclusions with initial and non-separated boundary conditions

Abstract

In this paper, we study the existence of solutions for a new class of boundary value problems of nonlinear fractional integro-differential equations and inclusions of arbitrary order with initial and non-separated boundary conditions. In the case of inclusion, the existence results are obtained for convex as well as non-convex multifunctions. Our results rely on the standard tools of fixed point theory and are well illustrated with the aid of examples.

1 Introduction

The subject of fractional calculus has recently been investigated in an extensive manner. The publication of several books, special issues, and a huge number of articles in journals of international repute, exploring numerous aspects of this branch of mathematics, clearly indicates the popularity of the topic. One of the key factors accounting for the utility of the subject is that fractional-order operators are nonlocal in nature in contrast to the integer-order operators and can describe the hereditary properties of many underlying phenomena and processes. Owing to this characteristic, the principles of fractional calculus have played a significant role in improving the modeling techniques for several real world problems [1]–[4].

Many researchers have focused their attention on fractional differential equations and inclusions, and a variety of interesting and important results concerning existence and uniqueness of solutions, stability properties of solutions, analytic and numerical methods of solutions of these equations have been obtained and the surge for investigating more and more results is still under way. For details and examples, we refer the reader to a series of papers [5]–[29] and the references therein. Anti-periodic boundary value problems occur in the mathematical modeling of a variety of physical processes and some works have been published in this area, for instance; see [30]–[34] and the references therein.

In this paper, for α(n1,n], n5, nN, tI=[0,T], T>0, we investigate the fractional integro-differential equation

D α c x ( t ) = f ( t , x ( t ) , x ( t ) , x ( t ) , x ( t ) , ϕ x ( t ) , ψ x ( t ) , c D μ 1 x ( t ) , c D μ 2 x ( t ) , , c D μ m x ( t ) , D ν 1 c x ( t ) , c D ν 2 x ( t ) , , c D ν m x ( t ) , c D ξ 1 x ( t ) , c D ξ 2 x ( t ) , , c D ξ m x ( t ) ) ,
(1.1)

and related fractional integro-differential inclusion

D α c x ( t ) F ( t , x ( t ) , x ( t ) , x ( t ) , x ( t ) , ϕ x ( t ) , ψ x ( t ) , c D μ 1 x ( t ) , c D μ 2 x ( t ) , , c D μ m x ( t ) , D ν 1 c x ( t ) , c D ν 2 x ( t ) , , c D ν m x ( t ) , c D ξ 1 x ( t ) , c D ξ 2 x ( t ) , , c D ξ m x ( t ) ) ,
(1.2)

supplemented with initial boundary conditions

x ( 4 ) ( 0 ) = = x ( n 1 ) ( 0 ) = 0 , a x ( 0 ) + b x ( T ) = 0 , D p c x ( 0 ) = c D p x ( T ) , c D q x ( 0 ) = c D q x ( T ) , D γ c x ( 0 ) = c D γ x ( T ) , 0 < p < 1 , 1 < q < 2 , 2 < γ < 3 , a + b 0 , a , b R ,
(1.3)

where cD denotes the Caputo fractional derivative, f:[0,T]× R 6 + m + m + m R is a continuous function, F:[0,1]× R 6 + m + m + m P(R) is a multifunction, P(R) is the family of all non-empty subsets of R , and the maps ϕ and ψ are defined by

ϕx(t)= 0 t γ(t,s) h 1 ( t , s , x ( s ) , x ( s ) , x ( s ) , x ( s ) , c D δ 1 x ( s ) , c D β 1 x ( s ) , c D θ 1 x ( s ) ) ds

and

ψx(t)= 0 t λ(t,s) h 2 ( t , s , x ( s ) , x ( s ) , x ( s ) , x ( s ) , c D δ 2 x ( s ) , c D β 2 x ( s ) , c D θ 2 x ( s ) ) ds,

where γ,λ:[0,T]×[0,T]R and h 1 , h 2 :[0,T]×[0,T]× R 7 R are continuous maps, 0< μ i <1 (1im), 1< ν j <2 (1j m ), 2< ξ k <3 (1k m ), 0< δ i <1, 1< β i <2, and 2< θ i <3 for i=1,2.

The paper is organized as follows. In Section 2, we recall some preliminary facts that we used in the sequel. Section 3 deals with the existence result for single-valued initial boundary value problem, while the results for multivalued problem are presented in Section 4. We present some examples illustrating the main results in Section 5.

2 Preliminaries

Let (X,) be a normed space, P(X) the set of all non-empty subsets of X, P c l (X) the set of all non-empty closed subsets of X, P b (X) the set of all non-empty bounded subsets of X, P c p (X) the set of all non-empty compact subsets of X and P c p , c (X) the set of all non-empty compact and convex subsets of X[35]. A multivalued map G:XP(X) is said to be convex (closed) valued whenever G(x) is convex (closed) for all xX[35]. The multifunction G is called bounded on bounded sets whenever G(B)= x B G(x) is bounded subset of X for all B P b (X), that is, sup x B {sup{|y|:yG(x)}}< for all B P b (X)[35]. Also, the multifunction G:XP(X) is called upper semi-continuous whenever for each x 0 X the set G( x 0 ) is a non-empty closed subset of X, and for every open set N of X containing G( x 0 ), there exists an open neighborhood N 0 of x 0 such that G( N 0 )N[36], [37]. The multifunction G:XP(X) is called compact whenever G(B) is relatively compact for all B P b (X) and also is called completely continuous whenever G is upper semi-continuous and compact [38], [39]. It is well known that a compact multifunction G with non-empty compact valued is upper semi-continuous if and only if G has a closed graph, that is, x n x , y n G( x n ) for all n, and y n y imply y G( x )[37]. We say that x 0 X is a fixed point of a multifunction G whenever x 0 G( x 0 )[40]. Let T>0 and G:[0,T] P c l (R) a multifunction. We say that G is measurable whenever the function td(y,G(t))=inf{|yz|:zG(t)} is measurable for all yR[38], [39].

One can find basic notions of fractional calculus in [1] and [2]. We recall two necessary ones here.

The Riemann-Liouville fractional integral of order q>0 with the lower limit zero for a function f:[0,)R is defined by I q f(t)= 1 Γ ( q ) 0 t f ( s ) ( t s ) 1 q ds for t>0 provided the integral exists.

The Caputo fractional derivative of order q>0 for a function f C n ([0,),R) can be written as

D q c f(t)= 1 Γ ( n q ) 0 t f ( n ) ( s ) ( t s ) q + 1 n ds= I n q f ( n ) (t),

where n1<qn and t>0.

To define the solution for problems (1.1)-(1.3) and (1.2)-(1.3), we establish the following lemma.

Lemma 2.1

Lety L 1 ([0,T],R). Then the integral solution of the linear equation

D α c x(t)=y(t)
(2.1)

subject to the initial boundary conditions (1.3) is given by

x(t)= 0 T G(t,s)y(s)ds,
(2.2)

where

G(t,s)= { ( t s ) α 1 Γ ( α ) + G 1 ( t , s ) , if  s t , G 1 ( t , s ) , if  t s ,

and

G 1 ( t , s ) = b ( T s ) α 1 ( a + b ) Γ ( α ) + [ b T ( a + b ) t ] Γ ( 2 p ) ( T s ) α p 1 ( a + b ) Γ ( α p ) T 1 p [ b p T 2 ( a + b ) ( 2 T t ( 2 p ) t 2 ) ] Γ ( 3 q ) ( T s ) α q 1 2 ( a + b ) ( 2 p ) Γ ( α q ) T 2 q Γ ( 4 γ ) ( T s ) α γ 1 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ × ( b ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) T 3 + ( a + b ) ( 6 ( p q ) T 2 t + ( 2 p ) ( 3 p ) ( 3 T t 2 + ( 3 q ) t 3 ) ) ) .

Proof

It is well known that the solution of (2.1) can be written as

x ( t ) = I α y ( t ) b 0 b 1 t b 2 t 2 b 3 t 3 b 4 t 4 b n 1 t n 1 = 1 Γ ( α ) 0 t ( t s ) α 1 y ( s ) d s b 0 b 1 t b 2 t 2 b 3 t 3 b 4 t 4 b n 1 t n 1 ,
(2.3)

where b 0 , b 1 , b 2 , b 3 , b 4 ,, b n 1 R are arbitrary constants. Using the initial conditions x ( 4 ) (0)== x ( n 1 ) (0)=0, we find that b 4 == b n 1 =0. Since D p c c=0 for all constant c, D p c t= t 1 p Γ ( 2 p ) , D p c t 2 = 2 t 2 p Γ ( 3 p ) , D p c t 3 = 6 t 3 p Γ ( 4 p ) , D q c t=0, D q c t 2 = 2 t 2 q Γ ( 3 q ) , D q c t 3 = 6 t 3 q Γ ( 4 q ) , D γ c t=0, D γ c t 2 =0, D γ c t 3 = 6 t 3 γ Γ ( 4 γ ) , D p c I α y(t)= I α p y(t), D q c I α y(t)= I α q y(t), and D γ c I α y(t)= I α γ y(t), therefore

D p c x ( t ) = 1 Γ ( α p ) 0 t ( t s ) α p 1 y ( s ) d s b 1 t 1 p Γ ( 2 p ) b 2 2 t 2 p Γ ( 3 p ) b 3 6 t 3 p Γ ( 4 p ) , D q c x ( t ) = 1 Γ ( α q ) 0 t ( t s ) α q 1 y ( s ) d s b 2 2 t 2 q Γ ( 3 q ) b 3 6 t 3 q Γ ( 4 q ) , D γ c x ( t ) = 1 Γ ( α γ ) 0 t ( t s ) α γ 1 y ( s ) d s b 3 6 t 3 γ Γ ( 4 γ ) .

Now using the conditions ax(0)+bx(T)=0, D p c x(0)= c D p x(T), D q c x(0)= c D q x(T), and D γ c x(0)= c D γ x(T), we obtain

b 0 = b ( a + b ) [ 1 Γ ( α ) 0 T ( T s ) α 1 y ( s ) d s Γ ( 2 p ) T p Γ ( α p ) 0 T ( T s ) α p 1 y ( s ) d s + p Γ ( 3 q ) T q 2 ( 2 p ) Γ ( α q ) 0 T ( T s ) α q 1 y ( s ) d s + [ 6 ( q p ) + ( 2 p ) ( 3 p ) q ] Γ ( 4 γ ) T γ 6 ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) 0 T ( T s ) α γ 1 y ( s ) d s ] , b 1 = Γ ( 2 p ) Γ ( α p ) T 1 p 0 T ( T s ) α p 1 y ( s ) d s Γ ( 3 q ) ( 2 p ) Γ ( α q ) T 1 q 0 T ( T s ) α q 1 y ( s ) d s + ( q p ) Γ ( 4 γ ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 1 γ 0 T ( T s ) α γ 1 y ( s ) d s , b 2 = Γ ( 3 q ) 2 Γ ( α q ) T 2 q 0 T ( T s ) α q 1 y ( s ) d s Γ ( 4 γ ) 2 ( 3 q ) Γ ( α γ ) T 2 γ 0 T ( T s ) α γ 1 y ( s ) d s , b 3 = Γ ( 4 γ ) 6 Γ ( α γ ) T 3 γ 0 T ( T s ) α γ 1 y ( s ) d s .

Substituting the values of b 0 , b 1 , b 2 , b 3 , b 4 ,, b n 1 in (2.3), we get the solution (2.2). □

3 Existence results for problem (1.1)-(1.3)

Consider the space X={u:u C 3 (I)} endowed with the norm

u= sup t I | u ( t ) | + sup t I | u ( t ) | + sup t I | u ( t ) | + sup t I | u ( t ) | .

Obviously (X,) is a Banach space.

We need the following result [40] in the sequel.

Theorem 3.1

Let E be a Banach space, S:EEa completely continuous operator and

V={xE:x=μSx,0μ1}

a bounded set. Then S has a fixed point in E.

Let us define the operator T:XX by

( T x ) ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 f ˜ ( s , x ( s ) ) d s b ( a + b ) Γ ( α ) 0 T ( T s ) α 1 f ˜ ( s , x ( s ) ) d s + [ b T ( a + b ) t ] Γ ( 2 p ) ( a + b ) Γ ( α p ) T 1 p 0 T ( T s ) α p 1 f ˜ ( s , x ( s ) ) d s [ b p T 2 ( a + b ) ( 2 T t ( 2 p ) t 2 ) ] Γ ( 3 q ) 2 ( a + b ) ( 2 p ) Γ ( α q ) T 2 q 0 T ( T s ) α q 1 f ˜ ( s , x ( s ) ) d s ( [ b ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) T 3 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ + ( a + b ) ( 6 ( q p ) T 2 t + ( 2 p ) ( 3 p ) ( 3 T t 2 + ( 3 q ) t 3 ) ) ] Γ ( 4 γ ) 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ ) × 0 T ( T s ) α γ 1 f ˜ ( s , x ( s ) ) d s ,

where

f ˜ ( s , x ( s ) ) = f ( s , x ( s ) , x ( s ) , x ( s ) , x ( s ) , ϕ x ( s ) , ψ x ( s ) , c D μ 1 x ( s ) , c D μ 2 x ( s ) , , c D μ m x ( s ) , D ν 1 c x ( s ) , c D ν 2 x ( s ) , , c D ν m x ( s ) , c D ξ 1 x ( s ) , c D ξ 2 x ( s ) , , c D ξ m x ( s ) ) .

For the sake of convenience, we set

M 1 = [ | a | + 2 | b | | a + b | Γ ( α + 1 ) + ( | a | + 2 | b | ) Γ ( 2 p ) | a + b | Γ ( α p + 1 ) + ( | b | p + | a + b | ( 4 p ) ) Γ ( 3 q ) 2 | a + b | ( 2 p ) Γ ( α q + 1 ) + ( [ | b | ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) 6 | a + b | ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ + 1 ) + | a + b | ( 6 ( q p ) + ( 2 p ) ( 3 p ) ( 6 q ) ) ] Γ ( 4 γ ) 6 | a + b | ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ + 1 ) ) ] T α + [ 1 Γ ( α ) + Γ ( 2 p ) Γ ( α p + 1 ) + ( 3 p ) Γ ( 3 q ) ( 2 p ) Γ ( α q + 1 ) + [ 2 ( q p ) + ( 2 p ) ( 3 p ) ( 5 q ) ] Γ ( 4 γ ) 2 ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ + 1 ) ] T α 1 + [ 1 Γ ( α 1 ) + Γ ( 3 q ) Γ ( α q + 1 ) + ( 4 q ) Γ ( 4 γ ) ( 3 q ) Γ ( α γ + 1 ) ] T α 2 + [ 1 Γ ( α 2 ) + Γ ( 4 γ ) Γ ( α γ + 1 ) ] T α 3 .

Theorem 3.2

The operatorT:XXis completely continuous.

Proof

First, we show that the operator T:XX is continuous. Let { x n } be a sequence in X with x n x 0 and 0< μ 1 ,, μ m <1. Then we have

sup t I | c D μ i x n ( t ) c D μ i x 0 ( t ) | = sup t I | 1 Γ ( 1 μ i ) 0 t ( t s ) μ i x n ( s ) d s 1 Γ ( 1 μ i ) 0 t ( t s ) μ i x 0 ( s ) d s | = sup t I | 1 Γ ( 1 μ i ) 0 t ( t s ) μ i [ x n ( s ) x 0 ( s ) ] d s | T 1 μ i Γ ( 2 μ i ) sup t I | x n ( t ) x 0 ( t ) | T 1 μ i Γ ( 2 μ i ) x n x 0 .

Since x n x0, lim n c D μ i x n (t)= c D μ i x 0 (t) uniformly on I. Similarly, lim n c D ν j x n (t)= c D ν j x 0 (t) uniformly on I for 1j m , lim n c D ξ k x n (t)= c D ξ k x 0 (t) uniformly on I for 1k m . Also, we get lim n c D δ i x n (t)= c D δ i x 0 (t), lim n c D β i x n (t)= c D β i x 0 (t), and lim n c D θ i x n (t)= c D θ i x 0 (t) uniformly on I for i=1,2. Since

T x n T x 0 = sup t I | T x n ( t ) T x 0 ( t ) | + sup t I | ( T x n ) ( t ) ( T x 0 ) ( t ) | + sup t I | ( T x n ) ( t ) ( T x 0 ) ( t ) | + sup t I | ( T x n ) ( t ) ( T x 0 ) ( t ) | ,

using the continuity of f, h 1 , h 2 , we get T x n Tx0. Thus, T is continuous on X. Now, let ΩX be a bounded subset. Then there exists a positive constant L>0 such that | f ˜ (t,x(t))|L for all tI and xΩ. We show that T Ω is a bounded set. We have

| ( T x ) ( t ) | 1 Γ ( α ) 0 t ( t s ) α 1 | f ˜ ( s , x ( s ) ) | d s + | b | | a + b | Γ ( α ) 0 T ( T s ) α 1 | f ˜ ( s , x ( s ) ) | d s + | b T ( a + b ) t | Γ ( 2 p ) | a + b | Γ ( α p ) T 1 p 0 T ( T s ) α p 1 | f ˜ ( s , x ( s ) ) | d s + | b p T 2 ( a + b ) ( 2 T t ( 2 p ) t 2 ) | Γ ( 3 q ) 2 | a + b | ( 2 p ) Γ ( α q ) T 2 q 0 T ( T s ) α q 1 | f ˜ ( s , x ( s ) ) | d s + ( | b ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) T 3 6 | a + b | ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ + ( a + b ) ( 6 ( q p ) T 2 t + ( 2 p ) ( 3 p ) ( 3 T t 2 + ( 3 q ) t 3 ) ) | Γ ( 4 γ ) 6 | a + b | ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ ) × 0 T ( T s ) α γ 1 | f ˜ ( s , x ( s ) ) | d s ( | a | + 2 | b | ) L T α | a + b | Γ ( α + 1 ) + ( | a | + 2 | b | ) Γ ( 2 p ) L T α | a + b | Γ ( α p + 1 ) + ( | b | p + | a + b | ( 4 p ) ) Γ ( 3 q ) L T α 2 | a + b | ( 2 p ) Γ ( α q + 1 ) + ( [ | b | ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) 6 | a + b | ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ + 1 ) + | a + b | ( 6 ( q p ) + ( 2 p ) ( 3 p ) ( 6 q ) ) ] Γ ( 4 γ ) L T α 6 | a + b | ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ + 1 ) ) , | ( T x ) ( t ) | 1 Γ ( α 1 ) 0 t ( t s ) α 2 | f ˜ ( s , x ( s ) ) | d s + Γ ( 2 p ) Γ ( α p ) T 1 p 0 T ( T s ) α p 1 | f ˜ ( s , x ( s ) ) | d s + | T ( 2 p ) t | Γ ( 3 q ) ( 2 p ) Γ ( α q ) T 2 q 0 T ( T s ) α q 1 | f ˜ ( s , x ( s ) ) | d s + | 2 ( q p ) T 2 + ( 2 p ) ( 3 p ) ( 2 T t + ( 3 q ) t 2 ) | Γ ( 4 γ ) 2 ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ × 0 T ( T s ) α γ 1 | f ˜ ( s , x ( s ) ) | d s T α 1 L Γ ( α ) + Γ ( 2 p ) L T α 1 Γ ( α p + 1 ) + ( 3 p ) Γ ( 3 q ) L T α 1 ( 2 p ) Γ ( α q + 1 ) + [ 2 ( q p ) + ( 2 p ) ( 3 p ) ( 5 q ) ] Γ ( 4 γ ) L T α 1 2 ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ + 1 ) , | ( T x ) ( t ) | 1 Γ ( α 2 ) 0 t ( t s ) α 3 | f ˜ ( s , x ( s ) ) | d s + Γ ( 3 q ) Γ ( α q ) T 2 q 0 T ( T s ) α q 1 | f ˜ ( s , x ( s ) ) | d s + | T + ( 3 q ) t | Γ ( 4 γ ) ( 3 q ) Γ ( α γ ) T 3 γ 0 T ( T s ) α γ 1 | f ˜ ( s , x ( s ) ) | d s L T α 2 Γ ( α 1 ) + Γ ( 3 q ) L T α 2 Γ ( α q + 1 ) + ( 4 q ) Γ ( 4 γ ) L T α 2 ( 3 q ) Γ ( α γ + 1 ) ,

and

| ( T x ) ( t ) | 1 Γ ( α 3 ) 0 t ( t s ) α 4 | f ˜ ( s , x ( s ) ) | d s + Γ ( 4 γ ) Γ ( α γ ) T 3 γ 0 T ( T s ) α γ 1 | f ˜ ( s , x ( s ) ) | d s L T α 3 Γ ( α 2 ) + Γ ( 4 γ ) L T α 3 Γ ( α γ + 1 )

for all xΩ. Hence, we get

T x = sup t I | ( T x ) ( t ) | + sup t I | ( T x ) ( t ) | + sup t I | ( T x ) ( t ) | + sup t I | ( T x ) ( t ) | [ | a | + 2 | b | | a + b | Γ ( α + 1 ) + ( | a | + 2 | b | ) Γ ( 2 p ) | a + b | Γ ( α p + 1 ) + ( | b | p + | a + b | ( 4 p ) ) Γ ( 3 q ) 2 | a + b | ( 2 p ) Γ ( α q + 1 ) + ( [ | b | ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) 6 | a + b | ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ + 1 ) + | a + b | ( 6 ( q p ) + ( 2 p ) ( 3 p ) ( 6 q ) ) ] Γ ( 4 γ ) 6 | a + b | ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ + 1 ) ) ] L T α + [ 1 Γ ( α ) + Γ ( 2 p ) Γ ( α p + 1 ) + ( 3 p ) Γ ( 3 q ) ( 2 p ) Γ ( α q + 1 ) + [ 2 ( q p ) + ( 2 p ) ( 3 p ) ( 5 q ) ] Γ ( 4 γ ) 2 ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ + 1 ) ] L T α 1 + [ 1 Γ ( α 1 ) + Γ ( 3 q ) Γ ( α q + 1 ) + ( 4 q ) Γ ( 4 γ ) ( 3 q ) Γ ( α γ + 1 ) ] L T α 2 + [ 1 Γ ( α 2 ) + Γ ( 4 γ ) Γ ( α γ + 1 ) ] L T α 3 = M 1 L .

This implies that the operator T maps bounded sets of X into bounded sets. Now, we prove that the sets {Tx:xΩ}, { ( T x ) :xΩ}, { ( T x ) :xΩ}, { ( T x ) :xΩ} are equicontinuous on I. For 0 t 1 < t 2 T, we have

| ( T x ) ( t 2 ) ( T x ) ( t 1 ) | = | 1 Γ ( α ) 0 t 2 ( t 2 s ) α 1 f ˜ ( s , x ( s ) ) d s 1 Γ ( α ) 0 t 1 ( t 1 s ) α 1 f ˜ ( s , x ( s ) ) d s ( t 2 t 1 ) Γ ( 2 p ) Γ ( α p ) T 1 p 0 T ( T s ) α p 1 f ˜ ( s , x ( s ) ) d s + [ 2 T ( t 2 t 1 ) ( 2 p ) ( t 2 2 t 1 2 ) ] Γ ( 3 q ) 2 ( 2 p ) Γ ( α q ) T 2 q 0 T ( T s ) α q 1 f ˜ ( s , x ( s ) ) d s [ 6 ( q p ) T 2 ( t 2 t 1 ) + ( 2 p ) ( 3 p ) ( 3 T ( t 2 2 t 1 2 ) + ( 3 q ) ( t 2 3 t 1 3 ) ) ] Γ ( 4 γ ) 6 ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ × 0 T ( T s ) α γ 1 f ˜ ( s , x ( s ) ) d s | L Γ ( α ) 0 t 1 [ ( t 2 s ) α 1 ( t 1 s ) α 1 ] d s + L Γ ( α ) t 1 t 2 ( t 2 s ) α 1 d s + ( t 2 t 1 ) Γ ( 2 p ) L T α 1 Γ ( α p + 1 ) + [ 2 T ( t 2 t 1 ) + ( 2 p ) ( t 2 2 t 1 2 ) ] Γ ( 3 q ) L T α 2 2 ( 2 p ) Γ ( α q + 1 ) + [ 6 ( q p ) T 2 ( t 2 t 1 ) + ( 2 p ) ( 3 p ) ( 3 T ( t 2 2 t 1 2 ) + ( 3 q ) ( t 2 3 t 1 3 ) ) ] Γ ( 4 γ ) L T α 3 6 ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ + 1 ) L Γ ( α + 1 ) ( t 2 α t 1 α ) + ( t 2 t 1 ) Γ ( 2 p ) L T α 1 Γ ( α p + 1 ) + [ 2 T ( t 2 t 1 ) + ( 2 p ) ( t 2 2 t 1 2 ) ] Γ ( 3 q ) L T α 2 2 ( 2 p ) Γ ( α q + 1 ) + [ 6 ( q p ) T 2 ( t 2 t 1 ) + ( 2 p ) ( 3 p ) ( 3 T ( t 2 2 t 1 2 ) + ( 3 q ) ( t 2 3 t 1 3 ) ) ] Γ ( 4 γ ) L T α 3 6 ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ + 1 ) .

In a similar manner, one can find that

| ( T x ) ( t 2 ) ( T x ) ( t 1 ) | L Γ ( α ) ( t 2 α 1 t 1 α 1 ) + ( t 2 t 1 ) Γ ( 3 q ) L T α 2 Γ ( α q + 1 ) + [ 2 T ( t 2 t 1 ) + ( 3 q ) ( t 2 2 t 1 2 ) ] Γ ( 4 γ ) L T α 3 2 ( 3 q ) Γ ( α γ + 1 ) , | ( T x ) ( t 2 ) ( T x ) ( t 1 ) | L Γ ( α 1 ) ( t 2 α 2 t 1 α 2 ) + ( t 2 t 1 ) Γ ( 4 γ ) L T α 3 Γ ( α γ + 1 ) ,

and

| ( T x ) ( t 2 ) ( T x ) ( t 1 ) | L Γ ( α 2 ) ( t 2 α 3 t 1 α 3 ) .

Clearly the right-hand sides of the above inequalities tend to zero as t 2 t 1 . So T is completely continuous. This completes the proof. □

Theorem 3.3

Assume that there exist positive constants d 0 >0, d i 0 (1i6), ζ i 0 (1im), η j 0 (1j m ), τ k 0 (1k m ), l i 1 , l i 2 0 (1i7), c 01 , c 02 >0such that

| f ( t , x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , y 1 , y 2 , , y m , z 1 , z 2 , , z m , w 1 , w 2 , , w m ) | d 0 + d 1 | x 1 | + d 2 | x 2 | + d 3 | x 3 | + d 4 | x 4 | + d 5 | x 5 | + d 6 | x 6 | + i = 1 m ζ i | y i | + j = 1 m η j | z j | + k = 1 m τ k | w k |

for all tI and x 1 ,, x 6 , y 1 ,, y m , z 1 ,, z m , τ 1 ,, τ m R and

| h j ( t , s , u 1 , u 2 , u 3 , u 4 , u 5 , u 6 , u 7 ) | c 0 j + i = 1 7 l i j | u i |

forj=1,2, allt,sI, and all u 1 ,, u 7 R. In addition, assume that

M 1 = M 1 [ d 1 + d 2 + d 3 + d 4 + d 5 γ 0 ( l 11 + l 21 + l 31 + l 41 + l 51 T 1 δ 1 Γ ( 2 δ 1 ) + l 61 T 2 β 1 Γ ( 3 β 1 ) + l 71 T 3 θ 1 Γ ( 4 θ 1 ) ) + d 6 λ 0 ( l 12 + l 22 + l 32 + l 42 + l 52 T 1 δ 2 Γ ( 2 δ 2 ) + l 62 T 2 β 2 Γ ( 3 β 2 ) + l 72 T 3 θ 2 Γ ( 4 θ 2 ) ) + i = 1 m ζ i T 1 μ i Γ ( 2 μ i ) + j = 1 m η j T 2 ν j Γ ( 3 ν j ) + k = 1 m τ k T 3 ξ k Γ ( 4 ξ k ) ] < 1 ,

where γ 0 = sup t I 0 t |γ(t,s)|dsand λ 0 = sup t I 0 t |λ(t,s)|ds. Then problem (1.1)-(1.3) has at least one solution.

Proof

In view of Theorem 3.2, the operator T:XX is completely continuous. Next we show that the set V={xX:x=μTx,0μ1} is bounded. Let xV and tI. Then we have

x ( t ) = 1 Γ ( α ) 0 t μ ( t s ) α 1 f ˜ ( s , x ( s ) ) d s b ( a + b ) Γ ( α ) 0 T μ ( T s ) α 1 f ˜ ( s , x ( s ) ) d s + [ b T ( a + b ) t ] Γ ( 2 p ) ( a + b ) Γ ( α p ) T 1 p 0 T μ ( T s ) α p 1 f ˜ ( s , x ( s ) ) d s [ b p T 2 ( a + b ) ( 2 T t ( 2 p ) t 2 ) ] Γ ( 3 q ) 2 ( a + b ) ( 2 p ) Γ ( α q ) T 2 q 0 T μ ( T s ) α q 1 f ˜ ( s , x ( s ) ) d s ( [ b ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) T 3 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ + ( a + b ) ( 6 ( q p ) T 2 t + ( 2 p ) ( 3 p ) ( 3 T t 2 + ( 3 q ) t 3 ) ) ] Γ ( 4 γ ) 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ ) × 0 T μ ( T s ) α γ 1 f ˜ ( s , x ( s ) ) d s , x ( t ) = 1 Γ ( α 1 ) 0 t μ ( t s ) α 2 f ˜ ( s , x ( s ) ) d s Γ ( 2 p ) Γ ( α p ) T 1 p 0 T μ ( T s ) α p 1 f ˜ ( s , x ( s ) ) d s + [ T ( 2 p ) t ] Γ ( 3 q ) ( 2 p ) Γ ( α q ) T 2 q 0 T μ ( T s ) α q 1 f ˜ ( s , x ( s ) ) d s [ 2 ( q p ) T 2 + ( 2 p ) ( 3 p ) ( 2 T t + ( 3 q ) t 2 ) ] Γ ( 4 γ ) 2 ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ × 0 T μ ( T s ) α γ 1 f ˜ ( s , x ( s ) ) d s , x ( t ) = 1 Γ ( α 2 ) 0 t μ ( t s ) α 3 f ˜ ( s , x ( s ) ) d s Γ ( 3 q ) Γ ( α q ) T 2 q 0 T μ ( T s ) α q 1 f ˜ ( s , x ( s ) ) d s [ T + ( 3 q ) t ] Γ ( 4 γ ) ( 3 q ) Γ ( α γ ) T 3 γ 0 T μ ( T s ) α γ 1 f ˜ ( s , x ( s ) ) d s ,

and x (t)= 1 Γ ( α 3 ) 0 t μ ( t s ) α 4 f ˜ (s,x(s))ds Γ ( 4 γ ) Γ ( α γ ) T 3 γ 0 T μ ( T s ) α γ 1 f ˜ (s,x(s))ds. Thus, we get

| x ( t ) | = μ | T x ( t ) | [ d 0 + d 1 x + d 2 x + d 3 x + d 4 x + d 5 γ 0 ( c 01 + l 11 x + l 21 x + l 31 x + l 41 x + l 51 T 1 δ 1 Γ ( 2 δ 1 ) x + l 61 T 2 β 1 Γ ( 3 β 1 ) x + l 71 T 3 θ 1 Γ ( 4 θ 1 ) x ) + d 6 λ 0 ( c 02 + l 12 x + l 22 x + l 32 x + l 42 x + l 52 T 1 δ 2 Γ ( 2 δ 2 ) x + l 62 T 2 β 2 Γ ( 3 β 2 ) x + l 72 T 3 θ 2 Γ ( 4 θ 2 ) x ) + i = 1 m ζ i T 1 μ i Γ ( 2 μ i ) x + j = 1 m η j T 2 ν j Γ ( 3 ν j ) x + k = 1 m τ k T 3 ξ k Γ ( 4 ξ k ) x ] × [ ( | a | + 2 | b | ) T α | a + b | Γ ( α + 1 ) + ( | a | + 2 | b | ) Γ ( 2 p ) T α | a + b | Γ ( α p + 1 ) + ( | b | p + | a + b | ( 4 p ) ) Γ ( 3 q ) T α 2 | a + b | ( 2 p ) Γ ( α q + 1 ) + ( [ | b | ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) 6 | a + b | ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ + 1 ) + | a + b | ( 6 ( q p ) + ( 2 p ) ( 3 p ) ( 6 q ) ) ] Γ ( 4 γ ) T α 6 | a + b | ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ + 1 ) ) ] , | x ( t ) | = μ | ( T x ) ( t ) | [ d 0 + d 1 x + d 2 x + d 3 x + d 4 x + d 5 γ 0 ( c 01 + l 11 x + l 21 x + l 31 x + l 41 x + l 51 T 1 δ 1 Γ ( 2 δ 1 ) x + l 61 T 2 β 1 Γ ( 3 β 1 ) x + l 71 T 3 θ 1 Γ ( 4 θ 1 ) x ) + d 6 λ 0 ( c 02 + l 12 x + l 22 x + l 32 x + l 42 x + l 52 T 1 δ 2 Γ ( 2 δ 2 ) x + l 62 T 2 β 2 Γ ( 3 β 2 ) x + l 72 T 3 θ 2 Γ ( 4 θ 2 ) x ) + i = 1 m ζ i T 1 μ i Γ ( 2 μ i ) x + j = 1 m η j T 2 ν j Γ ( 3 ν j ) x + k = 1 m τ k T 3 ξ k Γ ( 4 ξ k ) x ] × [ T α 1 Γ ( α ) + Γ ( 2 p ) T α 1 Γ ( α p + 1 ) + ( 3 p ) Γ ( 3 q ) T α 1 ( 2 p ) Γ ( α q + 1 ) + [ 2 ( q p ) + ( 2 p ) ( 3 p ) ( 5 q ) ] Γ ( 4 γ ) T α 1 2 ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ + 1 ) ] , | x ( t ) | = μ | ( T x ) ( t ) | [ d 0 + d 1 x + d 2 x + d 3 x + d 4 x + d 5 γ 0 ( c 01 + l 11 x + l 21 x + l 31 x + l 41 x + l 51 T 1 δ 1 Γ ( 2 δ 1 ) x + l 61 T 2 β 1 Γ ( 3 β 1 ) x + l 71 T 3 θ 1 Γ ( 4 θ 1 ) x ) + d 6 λ 0 ( c 02 + l 12 x + l 22 x + l 32 x + l 42 x + l 52 T 1 δ 2 Γ ( 2 δ 2 ) x + l 62 T 2 β 2 Γ ( 3 β 2 ) x + l 72 T 3 θ 2 Γ ( 4 θ 2 ) x ) + i = 1 m ζ i T 1 μ i Γ ( 2 μ i ) x + j = 1 m η j T 2 ν j Γ ( 3 ν j ) x + k = 1 m τ k T 3 ξ k Γ ( 4 ξ k ) x ] × [ T α 2 Γ ( α 1 ) + Γ ( 3 q ) T α 2 Γ ( α q + 1 ) + ( 4 q ) Γ ( 4 γ ) T α 2 ( 3 q ) Γ ( α γ + 1 ) ] ,

and

| x ( t ) | = μ | ( T x ) ( t ) | [ d 0 + d 1 x + d 2 x + d 3 x + d 4 x + d 5 γ 0 ( c 01 + l 11 x + l 21 x + l 31 x + l 41 x + l 51 T 1 δ 1 Γ ( 2 δ 1 ) x + l 61 T 2 β 1 Γ ( 3 β 1 ) x + l 71 T 3 θ 1 Γ ( 4 θ 1 ) x ) + d 6 λ 0 ( c 02 + l 12 x + l 22 x + l 32 x + l 42 x + l 52 T 1 δ 2 Γ ( 2 δ 2 ) x + l 62 T 2 β 2 Γ ( 3 β 2 ) x + l 72 T 3 θ 2 Γ ( 4 θ 2 ) x ) + i = 1 m ζ i T 1 μ i Γ ( 2 μ i ) x + j = 1 m η j T 2 ν j Γ ( 3 ν j ) x + k = 1 m τ k T 3 ξ k Γ ( 4 ξ k ) x ] × [ T α 3 Γ ( α 2 ) + Γ ( 4 γ ) T α 3 Γ ( α γ + 1 ) ] .

This implies that

x M 1 [ d 1 + d 2 + d 3 + d 4 + d 5 γ 0 ( l 11 + l 21 + l 31 + l 41 + l 51 T 1 δ 1 Γ ( 2 δ 1 ) + l 61 T 2 β 1 Γ ( 3 β 1 ) + l 71 T 3 θ 1 Γ ( 4 θ 1 ) ) + d 6 λ 0 ( l 12 + l 22 + l 32 + l 42 + l 52 T 1 δ 2 Γ ( 2 δ 2 ) + l 62 T 2 β 2 Γ ( 3 β 2 ) + l 72 T 3 θ 2 Γ ( 4 θ 2 ) ) + i = 1 m ζ i T 1 μ i Γ ( 2 μ i ) + j = 1 m η j T 2 ν j Γ ( 3 ν j ) + k = 1 m τ k T 3 ξ k Γ ( 4 ξ k ) ] x + M 1 ( d 0 + d 5 γ 0 c 01 + d 6 λ 0 c 02 )

and so x M 1 ( d 0 + d 5 γ 0 c 01 + d 6 λ 0 c 02 ) 1 M 1 . Thus, the set V is bounded. Hence it follows by Theorem 3.1 that the operator T has at least one fixed point, which in turn implies that problem (1.1)-(1.3) has a solution. □

Theorem 3.4

Assume thatf:I× R 6 + m + m + m Rand h 1 , h 2 :I×I× R 7 Rare continuous functions and there exist constants n i 0 (1i6), k i 0 (1im), k j 0 (1j m ), k k 0 (1k m ), e i 1 , e i 2 0 (1i7) such that

| f ( t , x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , y 1 , y 2 , , y m , z 1 , z 2 , , z m , w 1 , w 2 , , w m ) f ( t , x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , y 1 , y 2 , , y m , z 1 , z 2 , , z m , w 1 , w 2 , , w m ) | n 1 | x 1 x 1 | + n 2 | x 2 x 2 | + n 3 | x 3 x 3 | + n 4 | x 4 x 4 | + n 5 | x 5 x 5 | + n 6 | x 6 x 6 | + i = 1 m k i | y i y i | + j = 1 m k j | z j z j | + k = 1 m k k | w k w k |

for all x 1 ,, x 6 , x 1 ,, x 6 , y 1 ,, y m , y 1 ,, y m , z 1 ,, z m , z 1 ,, z m , w 1 ,, w m , w 1 ,, w m R, andtI, and also

| h j ( t , s , u 1 , u 2 , u 3 , u 4 , u 5 , u 6 , u 7 ) h j ( t , s , u 1 , u 2 , u 3 , u 4 , u 5 , u 6 , u 7 ) | i = 1 7 e i j | u i u i |

forj=1,2, t,sI, and u 1 ,, u 7 , u 1 ,, u 7 R. In addition, suppose that

Δ = M 1 [ n 1 + n 2 + n 3 + n 4 + n 5 γ 0 ( e 11 + e 21 + e 31 + e 41 + e 51 T 1 δ 1 Γ ( 2 δ 1 ) + e 61 T 2 β 1 Γ ( 3 β 1 ) + e 71 T 3 θ 1 Γ ( 4 θ 1 ) ) + n 6 λ 0 ( e 12 + e 22 + e 32 + e 42 + e 52 T 1 δ 2 Γ ( 2 δ 2 ) + e 62 T 2 β 2 Γ ( 3 β 2 ) + e 72 T 3 θ 2 Γ ( 4 θ 2 ) ) + i = 1 m k i T 1 μ i Γ ( 2 μ i ) + j = 1 m k j T 2 ν j Γ ( 3 ν j ) + k = 1 m k k T 3 ξ k Γ ( 4 ξ k ) ] < 1 .

Then problem (1.1)-(1.3) has a unique solution.

Proof

Set N= sup 0 t T |f(t,0,0,,0)|<, κ j = sup 0 t , s T | h j (t,s,0,0,,0)|< for j=1,2, and choose r ( N + n 5 γ 0 κ 1 + n 6 λ 0 κ 2 ) M 1 1 Δ . We show that T( B r ) B r , where B r ={xX:xr}. Let x B r . Then we have

| ( T x ) ( t ) | 1 Γ ( α ) 0 t ( t s ) α 1 | f ˜ ( s , x ( s ) ) | d s + | b | | a + b | Γ ( α ) 0 T ( T s ) α 1 | f ˜ ( s , x ( s ) ) | d s + | b T ( a + b ) t | Γ ( 2 p ) | a + b | Γ ( α p ) T 1 p 0 T ( T s ) α p 1 | f ˜ ( s , x ( s ) ) | d s + | b p T 2 ( a + b ) ( 2 T t ( 2 p ) t 2 ) | Γ ( 3 q ) 2 | a + b | ( 2 p ) Γ ( α q ) T 2 q 0 T ( T s ) α q 1 | f ˜ ( s , x ( s ) ) | d s + ( | b ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) T 3 6 | a + b | ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ + ( a + b ) ( 6 ( q p ) T 2 t + ( 2 p ) ( 3 p ) ( 3 T t 2 + ( 3 q ) t 3 ) ) | Γ ( 4 γ ) 6 | a + b | ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ ) × 0 T ( T s ) α γ 1 | f ˜ ( s , x ( s ) ) | d s 1 Γ ( α ) 0 t ( t s ) α 1 [ | f ˜ ( s , x ( s ) ) f ( s , 0 , 0 , , 0 ) | + | f ( s , 0 , 0 , , 0 ) | ] d s + | b | | a + b | Γ ( α ) 0 T ( T s ) α 1 [ | f ˜ ( s , x ( s ) ) f ( s , 0 , 0 , , 0 ) | + | f ( s , 0 , 0 , , 0 ) | ] d s + | b T ( a + b ) t | Γ ( 2 p ) | a + b | Γ ( α p ) T 1 p 0 T ( T s ) α p 1 [ | f ˜ ( s , x ( s ) ) f ( s , 0 , 0 , , 0 ) | + | f ( s , 0 , 0 , , 0 ) | ] d s + | b p T 2 ( a + b ) ( 2 T t ( 2 p ) t 2 ) | Γ ( 3 q ) 2 | a + b | ( 2 p ) Γ ( α q ) T 2 q × 0 T ( T s ) α q 1 [ | f ˜ ( s , x ( s ) ) f ( s , 0 , 0 , , 0 ) | + | f ( s , 0 , 0 , , 0 ) | ] d s + ( | b ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) T 3 6 | a + b | ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ + ( a + b ) ( 6 ( q p ) T 2 t + ( 2 p ) ( 3 p ) ( 3 T t 2 + ( 3 q ) t 3 ) ) | Γ ( 4 γ ) 6 | a + b | ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ ) × 0 T ( T s ) α γ 1 [ | f ˜ ( s , x ( s ) ) f ( s , 0 , 0 , , 0 ) | + | f ( s , 0 , 0 , , 0 ) | ] d s [ ( n 1 + n 2 + n 3 + n 4 + n 5 γ 0 ( e 11 + e 21 + e 31 + e 41 + e 51 T 1 δ 1 Γ ( 2 δ 1 ) + e 61 T 2 β 1 Γ ( 3 β 1 ) + e 71 T 3 θ 1 Γ ( 4 θ 1 ) ) + n 6 λ 0 ( e 12 + e 22 + e 32 + e 42 + e 52 T 1 δ 2 Γ ( 2 δ 2 ) + e 62 T 2 β 2 Γ ( 3 β 2 ) + e 72 T 3 θ 2 Γ ( 4 θ 2 ) ) + i = 1 m k i T 1 μ i Γ ( 2 μ i ) + j = 1 m k j T 2 ν j Γ ( 3 ν j ) + k = 1 m k k T 3 ξ k Γ ( 4 ξ k ) ) r + N + n 5 γ 0 κ 1 + n 6 λ 0 κ 2 ] × [ ( | a | + 2 | b | ) T α | a + b | Γ ( α + 1 ) + ( | a | + 2 | b | ) Γ ( 2 p ) T α | a + b | Γ ( α p + 1 ) + ( | b | p + | a + b | ( 4 p ) ) Γ ( 3 q ) T α 2 | a + b | ( 2 p ) Γ ( α q + 1 ) + ( [ | b | ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) 6 | a + b | ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ + 1 ) + | a + b | ( 6 ( q p ) + ( 2 p ) ( 3 p ) ( 6 q ) ) ] Γ ( 4 γ ) T α 6 | a + b | ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ + 1 ) ) ] .

In a similar way, we can obtain

| ( T x ) ( t ) | [ ( n 1 + n 2 + n 3 + n 4 + n 5 γ 0 ( e 11 + e 21 + e 31 + e 41 + e 51 T 1 δ 1 Γ ( 2 δ 1 ) + e 61 T 2 β 1 Γ ( 3 β 1 ) + e 71 T 3 θ 1 Γ ( 4 θ 1 ) ) + n 6 λ 0 ( e 12 + e 22 + e 32 + e 42 + e 52 T 1 δ 2 Γ ( 2 δ 2 ) + e 62 T 2 β 2 Γ ( 3 β 2 ) + e 72 T 3 θ 2 Γ ( 4 θ 2 ) ) + i = 1 m k i T 1 μ i Γ ( 2 μ i ) + j = 1 m k j T 2 ν j Γ ( 3 ν j ) + k = 1 m k k T 3 ξ k Γ ( 4 ξ k ) ) r + N + n 5 γ 0 κ 1 + n 6 λ 0 κ 2 ] × [ T α 1 Γ ( α ) + Γ ( 2 p ) T α 1 Γ ( α p + 1 ) + ( 3 p ) Γ ( 3 q ) T α 1 ( 2 p ) Γ ( α q + 1 ) + [ 2 ( q p ) + ( 2 p ) ( 3 p ) ( 5 q ) ] Γ ( 4 γ ) T α 1 2 ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ + 1 ) ] , | ( T x ) ( t ) | [ ( n 1 + n 2 + n 3 + n 4 + n 5 γ 0 ( e 11 + e 21 + e 31 + e 41 + e 51 T 1 δ 1 Γ ( 2 δ 1 ) + e 61 T 2 β 1 Γ ( 3 β 1 ) + e 71 T 3 θ 1 Γ ( 4 θ 1 ) ) + n 6 λ 0 ( e 12 + e 22 + e 32 + e 42 + e 52 T 1 δ 2 Γ ( 2 δ 2 ) + e 62 T 2 β 2 Γ ( 3 β 2 ) + e 72 T 3 θ 2 Γ ( 4 θ 2 ) ) + i = 1 m k i T 1 μ i Γ ( 2 μ i ) + j = 1 m k j T 2 ν j Γ ( 3 ν j ) + k = 1 m k k T 3 ξ k Γ ( 4 ξ k ) ) r + N + n 5 γ 0 κ 1 + n 6 λ 0 κ 2 ] × [ T α 2 Γ ( α 1 ) + Γ ( 3 q ) T α 2 Γ ( α q + 1 ) + ( 4 q ) Γ ( 4 γ ) T α 2 ( 3 q ) Γ ( α γ + 1 ) ] ,

and

| ( T x ) ( t ) | [ ( n 1 + n 2 + n 3 + n 4 + n 5 γ 0 ( e 11 + e 21 + e 31 + e 41 + e 51 T 1 δ 1 Γ ( 2 δ 1 ) + e 61 T 2 β 1 Γ ( 3 β 1 ) + e 71 T 3 θ 1 Γ ( 4 θ 1 ) ) + n 6 λ 0 ( e 12 + e 22 + e 32 + e 42 + e 52 T 1 δ 2 Γ ( 2 δ 2 ) + e 62 T 2 β 2 Γ ( 3 β 2 ) + e 72 T 3 θ 2 Γ ( 4 θ 2 ) ) + i = 1 m k i T 1 μ i Γ ( 2 μ i ) + j = 1 m k j T 2 ν j Γ ( 3 ν j ) + k = 1 m k k T 3 ξ k Γ ( 4 ξ k ) ) r + N + n 5 γ 0 κ 1 + n 6 λ 0 κ 2 ] [ T α 3 Γ ( α 2 ) + Γ ( 4 γ ) T α 3 Γ ( α γ + 1 ) ] .

Hence,

T x [ ( n 1 + n 2 + n 3 + n 4 + n 5 γ 0 ( e 11 + e 21 + e 31 + e 41 + e 51 T 1 δ 1 Γ ( 2 δ 1 ) + e 61 T 2 β 1 Γ ( 3 β 1 ) + e 71 T 3 θ 1 Γ ( 4 θ 1 ) ) + n 6 λ 0 ( e 12 + e 22 + e 32 + e 42 + e 52 T 1 δ 2 Γ ( 2 δ 2 ) + e 62 T 2 β 2 Γ ( 3 β 2 ) + e 72 T 3 θ 2 Γ ( 4 θ 2 ) ) + i = 1 m k i T 1 μ i Γ ( 2 μ i ) + j = 1 m k j T 2 ν j Γ ( 3 ν j ) + k = 1 m k k T 3 ξ k Γ ( 4 ξ k ) ) r + N + n 5 γ 0 κ 1 + n 6 λ 0 κ 2 ] M 1 r

and so Txr. Also, we have

| ( T u ) ( t ) ( T v ) ( t ) | 1 Γ ( α ) 0 t ( t s ) α 1 [ | f ˜ ( s , u ( s ) ) f ˜ ( s , v ( s ) ) | ] d s + | b | | a + b | Γ ( α ) 0 T ( T s ) α 1 [ | f ˜ ( s , u ( s ) ) f ˜ ( s , v ( s ) ) | ] d s + | b T ( a + b ) t | Γ ( 2 p ) | a + b | Γ ( α p ) T 1 p 0 T ( T s ) α p 1 [ | f ˜ ( s , u ( s ) ) f ˜ ( s , v ( s ) ) | ] d s + | b p T 2 ( a + b ) ( 2 T t ( 2 p ) t 2 ) | Γ ( 3 q ) 2 | a + b | ( 2 p ) Γ ( α q ) T 2 q × 0 T ( T s ) α q 1 [ | f ˜ ( s , u ( s ) ) f ˜ ( s , v ( s ) ) | ] d s + ( | b ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) T 3 6 | a + b | ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ + ( a + b ) ( 6 ( q p ) T 2 t + ( 2 p ) ( 3 p ) ( 3 T t 2 + ( 3 q ) t 3 ) ) | Γ ( 4 γ ) 6 | a + b | ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ ) × 0 T ( T s ) α γ 1 [ | f ˜ ( s , u ( s ) ) f ˜ ( s , v ( s ) ) | ] d s [ n 1 + n 2 + n 3 + n 4 + n 5 γ 0 ( e 11 + e 21 + e 31 + e 41 + e 51 T 1 δ 1 Γ ( 2 δ 1 ) + e 61 T 2 β 1 Γ ( 3 β 1 ) + e 71 T 3 θ 1 Γ ( 4 θ 1 ) ) + n 6 λ 0 ( e 12 + e 22 + e 32 + e 42 + e 52 T 1 δ 2 Γ ( 2 δ 2 ) + e 62 T 2 β 2 Γ ( 3 β 2 ) + e 72 T 3 θ 2 Γ ( 4 θ 2 ) ) + i = 1 m k i T 1 μ i Γ ( 2 μ i ) + j = 1 m k j T 2 ν j Γ ( 3 ν j ) + k = 1 m k k T 3 ξ k Γ ( 4 ξ k ) ] × [ ( | a | + 2 | b | ) T α | a + b | Γ ( α + 1 ) + ( | a | + 2 | b | ) Γ ( 2 p ) T α | a + b | Γ ( α p + 1 ) + ( | b | p + | a + b | ( 4 p ) ) Γ ( 3 q ) T α 2 | a + b | ( 2 p ) Γ ( α q + 1 ) + ( [ | b | ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) 6 | a + b | ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ + 1 ) + | a + b | ( 6 ( q p ) + ( 2 p ) ( 3 p ) ( 6 q ) ) ] Γ ( 4 γ ) T α 6 | a + b | ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ + 1 ) ) ] u v

for all u,vX and tI. Similarly, one can obtain

| ( T u ) ( t ) ( T v ) ( t ) | [ n 1 + n 2 + n 3 + n 4 + n 5 γ 0 ( e 11 + e 21 + e 31 + e 41 + e 51 T 1 δ 1 Γ ( 2 δ 1 ) + e 61 T 2 β 1 Γ ( 3 β 1 ) + e 71 T 3 θ 1 Γ ( 4 θ 1 ) ) + n 6 λ 0 ( e 12 + e 22 + e 32 + e 42 + e 52 T 1 δ 2 Γ ( 2 δ 2 ) + e 62 T 2 β 2 Γ ( 3 β 2 ) + e 72 T 3 θ 2 Γ ( 4 θ 2 ) ) + i = 1 m k i T 1 μ i Γ ( 2 μ i ) + j = 1 m k j T 2 ν j Γ ( 3 ν j ) + k = 1 m k k T 3 ξ k Γ ( 4 ξ k ) ] × [ T α 1 Γ ( α ) + Γ ( 2 p ) T α 1 Γ ( α p + 1 ) + ( 3 p ) Γ ( 3 q ) T α 1 ( 2 p ) Γ ( α q + 1 ) + [ 2 ( q p ) + ( 2 p ) ( 3 p ) ( 5 q ) ] Γ ( 4 γ ) T α 1 2 ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ + 1 ) ] u v , | ( T u ) ( t ) ( T v ) ( t ) | [ n 1 + n 2 + n 3 + n 4 + n 5 γ 0 ( e 11 + e 21 + e 31 + e 41 + e 51 T 1 δ 1 Γ ( 2 δ 1 ) + e 61 T 2 β 1 Γ ( 3 β 1 ) + e 71 T 3 θ 1 Γ ( 4 θ 1 ) ) + n 6 λ 0 ( e 12 + e 22 + e 32 + e 42 + e 52 T 1 δ 2 Γ ( 2 δ 2 ) + e 62 T 2 β 2 Γ ( 3 β 2 ) + e 72 T 3 θ 2 Γ ( 4 θ 2 ) ) + i = 1 m k i T 1 μ i Γ ( 2 μ i ) + j = 1 m k j T 2 ν j Γ ( 3 ν j ) + k = 1 m k k T 3 ξ k Γ ( 4 ξ k ) ] × [ T α 2 Γ ( α 1 ) + Γ ( 3 q ) T α 2 Γ ( α q + 1 ) + ( 4 q ) Γ ( 4 γ ) T α 2 ( 3 q ) Γ ( α γ + 1 ) ] u v ,

and

| ( T u ) ( t ) ( T v ) ( t ) | [ n 1 + n 2 + n 3 + n 4 + n 5 γ 0 ( e 11 + e 21 + e 31 + e 41 + e 51 T 1 δ 1 Γ ( 2 δ 1 ) + e 61 T 2 β 1 Γ ( 3 β 1 ) + e 71 T 3 θ 1 Γ ( 4 θ 1 ) ) + n 6 λ 0 ( e 12 + e 22 + e 32 + e 42 + e 52 T 1 δ 2 Γ ( 2 δ 2 ) + e 62 T 2 β 2 Γ ( 3 β 2 ) + e 72 T 3 θ 2 Γ ( 4 θ 2 ) ) + i = 1 m k i T 1 μ i Γ ( 2 μ i ) + j = 1 m k j T 2 ν j Γ ( 3 ν j ) + k = 1 m k k T 3 ξ k Γ ( 4 ξ k ) ] × [ T α 3 Γ ( α 2 ) + Γ ( 4 γ ) T α 3 Γ ( α γ + 1 ) ]

for all u,vX and tI. This implies that

T u T v M 1 [ n 1 + n 2 + n 3 + n 4 + n 5 γ 0 ( e 11 + e 21 + e 31 + e 41 + e 51 T 1 δ 1 Γ ( 2 δ 1 ) + e 61 T 2 β 1 Γ ( 3 β 1 ) + e 71 T 3 θ 1 Γ ( 4 θ 1 ) ) + n 6 λ 0 ( e 12 + e 22 + e 32 + e 42 + e 52 T 1 δ 2 Γ ( 2 δ 2 ) + e 62 T 2 β 2 Γ ( 3 β 2 ) + e 72 T 3 θ 2 Γ ( 4 θ 2 ) ) + i = 1 m k i T 1 μ i Γ ( 2 μ i ) + j = 1 m k j T 2 ν j Γ ( 3 ν j ) + k = 1 m k k T 3 ξ k Γ ( 4 ξ k ) ] u v = Δ u v .

Since Δ<1, the operator T is a contraction. In consequence, by the Banach contraction principle, T has a unique fixed point which corresponds to the unique solution of problem (1.1)-(1.3). □

4 Existence results for problem (1.2)-(1.3)

This section is concerned with the existence of solutions for problem (1.2)-(1.3). As before, let the space X={u:u C 3 (I)} be endowed with the norm

u= sup t I | u ( t ) | + sup t I | u ( t ) | + sup t I | u ( t ) | + sup t I | u ( t ) | .

A multivalued map F:I× R 6 + m + m + m P(R) is said to be Carathéodory whenever the map

tF(t, x 1 , x 2 ,, x 6 + m + m + m )

is measurable for all x i R for 1i6+m+ m + m and the map

( x 1 , x 2 ,, x 6 + m + m + m )F(t, x 1 , x 2 ,, x 6 + m + m + m )

is upper semi-continuous for almost all tI. Also, a Carathéodory function F is said to be L 1 -Carathéodory whenever for each l>0 there exists ψ l L 1 (I, R + ) such that

F ( t , x 1 , x 2 , , x 6 + m + m + m ) p =sup { | v | : v F ( t , x 1 , x 2 , , x 6 + m + m + m ) } ψ l (t)

for all | x i |l (1i6+m+ m + m ) and almost all tI[35], [37].

Lemma 4.1

([41])

Let E be a Banach space, G:I×E P c p , c (E)an L 1 -Carathéodory multifunction, and θ a linear continuous mapping from L 1 (I,E)toC(I,E). Then the operator

θ S G :C(I,E) P c p , c ( C ( I , E ) )

defined byθ S G (x)=θ( S G , x )is a closed graph operator, where

S G , x = { w L 1 ( I , E ) : w ( t ) G ( t , x ( t ) )  for almost all  t I } .

Let E be a Banach space. The multivalued map G:I×E P c p (E) is said to be lower semi-continuous (l.s.c) type whenever S G :C(I,E)P( L 1 (I,E)) is lower semi-continuous and has non-empty closed and decomposable values [42].

Now we state some well-known results which are needed in the sequel.

Lemma 4.2

([42])

Let Y be a separable metric space andN:YP( L 1 (I,R))a lower semi-continuous multivalued map with closed decomposable values. Then N has a continuous selection, that is, there exists a continuous mappingg:Y L 1 (I,R)such thatg(y)N(y)for allyY.

Theorem 4.3

(Nonlinear alternative of Leray-Schauder type [43])

Let E be a Banach space, C a closed and convex subset of E, and U an open subset of C such that0U. IfF: U ¯ P c p , c (C)is an upper semi-continuous compact map, then either F has a fixed point in U ¯ or there is axUandλ(0,1)such thatxλF(x).

Theorem 4.4

(Covitz and Nadler [44])

Let(M,d)be a complete metric space. IfF:M P c l (M)is a contraction, then F has a fixed point.

For tI and xX, let the multifunction F ˜ be defined by

F ˜ ( t , x ( t ) ) = F ( t , x ( t ) , x ( t ) , x ( t ) , x ( t ) , ϕ x ( t ) , ψ x ( t ) , c D μ 1 x ( t ) , c D μ 2 x ( t ) , , c D μ m x ( t ) , D ν 1 c x ( t ) , c D ν 2 x ( t ) , , c D ν m x ( t ) , c D ξ 1 x ( t ) , c D ξ 2 x ( t ) , , c D ξ m x ( t ) )

and the set of selections of F by S F , x ={v L 1 (I,R):v(t) F ˜ (t,x(t)) for almost all tI}. For the sake of brevity, we set

M 2 = [ | a | + 2 | b | | a + b | Γ ( α ) + ( | a | + 2 | b | ) Γ ( 2 p ) | a + b | Γ ( α p ) + ( | b | p + | a + b | ( 4 p ) ) Γ ( 3 q ) 2 | a + b | ( 2 p ) Γ ( α q ) + ( [ | b | ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) 6 | a + b | ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) + | a + b | ( 6 ( q p ) + ( 2 p ) ( 3 p ) ( 6 q ) ) ] Γ ( 4 γ ) 6 | a + b | ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) ) ] T α 1 + [ 1 Γ ( α 1 ) + Γ ( 2 p ) Γ ( α p ) + ( 3 p ) Γ ( 3 q ) ( 2 p ) Γ ( α q ) + [ 2 ( q p ) + ( 2 p ) ( 3 p ) ( 5 q ) ] Γ ( 4 γ ) 2 ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) ] T α 2 + [ 1 Γ ( α 2 ) + Γ ( 3 q ) Γ ( α q ) + ( 4 q ) Γ ( 4 γ ) ( 3 q ) Γ ( α γ ) ] T α 3 + [ 1 Γ ( α 3 ) + Γ ( 4 γ ) Γ ( α γ ) ] T α 4 .

Now, we are in a position to give our first existence result for problem (1.2)-(1.3).

Theorem 4.5

Suppose thatF:I× R 6 + m + m + m P c p , c (R)is a Carathéodory multivalued map and there exist continuous nondecreasing functions φ i :[0,)(0,)for1i6, ψ i , ψ j , ψ k :[0,)(0,)for1im, 1j m , and1k m and nonnegative functions q i L 1 (I)for1i6, ρ i , ρ j , ρ k L 1 (I)for1im, 1j m and1k m such that

F ( t , x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , y 1 , y 2 , , y m , z 1 , z 2 , , z m , w 1 , w 2 , , w m ) p = sup { | y | : y F ( t , x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , y 1 , y 2 , , y m , z 1 , z 2 , , z m , w 1 , w 2 , , w m ) } q 1 ( t ) φ 1 ( | x 1 | ) + q 2 ( t ) φ 2 ( | x 2 | ) + q 3 ( t ) φ 3 ( | x 3 | ) + q 4 ( t ) φ 4 ( | x 4 | ) + q 5 ( t ) φ 5 ( | x 5 | ) + q 6 ( t ) φ 6 ( | x 6 | ) + i = 1 m ρ i ( t ) ψ i ( | y i | ) + j = 1 m ρ j ( t ) ψ j ( | z j | ) + k = 1 m ρ k ( t ) ψ k ( | w k | ) ,

for alltI, x i , y i , z j , w k Rfor1i6, 1im, 1j m , and1k m . Assume that there exist positive constants c 01 , c 02 >0and l i 1 , l i 2 0for1i7such that

| h j ( t , s , u 1 , u 2 , u 3 , u 4 , u 5 , u 6 , u 7 ) | c 0 j + i = 1 7 l i j | u i |

forj=1,2, allt,sI, and all u i Rfor1i7. If there exists a constantD>0such that D M 2 A ( D ) >1, then problem (1.2)-(1.3) has at least one solution, where

A ( D ) = q 1 1 φ 1 ( D ) + q 2 1 φ 2 ( D ) + q 3 1 φ 3 ( D ) + q 4 1 φ 4 ( D ) + q 5 1 φ 5 ( c 01 γ 0 + γ 0 [ l 11 + l 21 + l 31 + l 41 + l 51 T 1 γ 1 Γ ( 2 γ 1 ) + l 61 T 2 β 1 Γ ( 3 β 1 ) + l 71 T 3 θ 1 Γ ( 4 θ 1 ) ] D ) + q 6 1 φ 6 ( c 02 λ 0 + λ 0 [ l 12 + l 22 + l 32 + l 42 + l 52 T 1 γ 2 Γ ( 2 γ 2 ) + l 62 T 2 β 2 Γ ( 3 β 2 ) + l 72 T 3 θ 2 Γ ( 4 θ 2 ) ] D ) + i = 1 m ρ i 1 ψ i ( T 1 μ i Γ ( 2 μ i ) D ) + j = 1 m ρ j 1 ψ j ( T 2 ν j Γ ( 3 ν j ) D ) + k = 1 m ρ k 1 ψ k ( T 3 ξ k Γ ( 4 ξ k ) D ) .

Proof

Let xX. Observe that the first property of the multifunction F and Theorem 1.3.5 in [45] imply that S F , x is non-empty. Define an operator Ω:XP(X) by

Ω(x)= { g X :  there exists  f S F , x  such that  g ( t ) = γ f ( t )  for all  t I } ,

where

γ f ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 f ( s ) d s b ( a + b ) Γ ( α ) 0 T ( T s ) α 1 f ( s ) d s + [ b T ( a + b ) t ] Γ ( 2 p ) ( a + b ) Γ ( α p ) T 1 p 0 T ( T s ) α p 1 f ( s ) d s [ b p T 2 ( a + b ) ( 2 T t ( 2 p ) t 2 ) ] Γ ( 3 q ) 2 ( a + b ) ( 2 p ) Γ ( α q ) T 2 q 0 T ( T s ) α q 1 f ( s ) d s ( [ b ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) T 3 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ + ( a + b ) ( 6 ( q p ) T 2 t + ( 2 p ) ( 3 p ) ( 3 T t 2 + ( 3 q ) t 3 ) ) ] Γ ( 4 γ ) 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ ) × 0 T ( T s ) α γ 1 f ( s ) d s .

We show that the operator Ω satisfies the hypothesis of the nonlinear alternative of the Leray-Schauder type result (Theorem 4.3). First, we show that Ω(x) is convex for all xX. Let g 1 , g 2 Ω(x) and w[0,1]. Choose f 1 , f 2 S F , x such that

g i ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 f i ( s ) d s b ( a + b ) Γ ( α ) 0 T ( T s ) α 1 f i ( s ) d s + [ b T ( a + b ) t ] Γ ( 2 p ) ( a + b ) Γ ( α p ) T 1 p 0 T ( T s ) α p 1 f i ( s ) d s [ b p T 2 ( a + b ) ( 2 T t ( 2 p ) t 2 ) ] Γ ( 3 q ) 2 ( a + b ) ( 2 p ) Γ ( α q ) T 2 q 0 T ( T s ) α q 1 f i ( s ) d s ( [ b ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) T 3 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ + ( a + b ) ( 6 ( q p ) T 2 t + ( 2 p ) ( 3 p ) ( 3 T t 2 + ( 3 q ) t 3 ) ) ] Γ ( 4 γ ) 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ ) × 0 T ( T s ) α γ 1 f i ( s ) d s

for all tI. Then we have

[ w g 1 + ( 1 w ) g 2 ] ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 [ w f 1 ( s ) + ( 1 w ) f 2 ( s ) ] d s b ( a + b ) Γ ( α ) 0 T ( T s ) α 1 [ w f 1 ( s ) + ( 1 w ) f 2 ( s ) ] d s + [ b T ( a + b ) t ] Γ ( 2 p ) ( a + b ) Γ ( α p ) T 1 p 0 T ( T s ) α p 1 [ w f 1 ( s ) + ( 1 w ) f 2 ( s ) ] d s [ b p T 2 ( a + b ) ( 2 T t ( 2 p ) t 2 ) ] Γ ( 3 q ) 2 ( a + b ) ( 2 p ) Γ ( α q ) T 2 q × 0 T ( T s ) α q 1 [ w f 1 ( s ) + ( 1 w ) f 2 ( s ) ] d s ( [ b ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) T 3 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ + ( a + b ) ( 6 ( q p ) T 2 t + ( 2 p ) ( 3 p ) ( 3 T t 2 + ( 3 q ) t 3 ) ) ] Γ ( 4 γ ) 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ ) × 0 T ( T s ) α γ 1 [ w f 1 ( s ) + ( 1 w ) f 2 ( s ) ] d s

for all tI. Since F has convex values, it is easy to check that S F , x is convex and so w g 1 +(1w) g 2 Ω(x). Now, we show that Ω maps bounded sets into bounded sets in X. Let B r ={xX:xr}, x B r , and gΩ(x). Choose f S F , x such that

| g ( t ) | 1 Γ ( α ) 0 t ( t s ) α 1 | f ( s ) | d s + | b | | a + b | Γ ( α ) 0 T ( T s ) α 1 | f ( s ) | d s + | b T ( a + b ) t | Γ ( 2 p ) | a + b | Γ ( α p ) T 1 p 0 T ( T s ) α p 1 | f ( s ) | d s + | b p T 2 ( a + b ) ( 2 T t ( 2 p ) t 2 ) | Γ ( 3 q ) 2 | a + b | ( 2 p ) Γ ( α q ) T 2 q 0 T ( T s ) α q 1 | f ( s ) | d s + ( | b ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) T 3 6 | a + b | ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ + ( a + b ) ( 6 ( q p ) T 2 t + ( 2 p ) ( 3 p ) ( 3 T t 2 + ( 3 q ) t 3 ) ) | Γ ( 4 γ ) 6 | a + b | ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ ) × 0 T ( T s ) α γ 1 | f ( s ) | d s 1 Γ ( α ) 0 t ( t s ) α 1 [ q 1 ( s ) φ 1 ( | x ( s ) | ) + q 2 ( s ) φ 2 ( | x ( s ) | ) + q 3 ( s ) φ 3 ( | x ( s ) | ) + q 4 ( s ) φ 4 ( | x ( s ) | ) + q 5 ( s ) φ 5 ( | ϕ x ( s ) | ) + q 6 ( s ) φ 6 ( | ψ x ( s ) | ) + i = 1 m ρ i ( s ) ψ i ( | c D μ i x ( s ) | ) + j = 1 m ρ j ( s ) ψ j ( | c D ν j x ( s ) | ) + k = 1 m ρ k ( s ) ψ k ( | c D ξ k x ( s ) | ) ] d s + | b | | a + b | Γ ( α ) 0 T ( T s ) α 1 [ q 1 ( s ) φ 1 ( | x ( s ) | ) + q 2 ( s ) φ 2 ( | x ( s ) | ) + q 3 ( s ) φ 3 ( | x ( s ) | ) + q 4 ( s ) φ 4 ( | x ( s ) | ) + q 5 ( s ) φ 5 ( | ϕ x ( s ) | ) + q 6 ( s ) φ 6 ( | ψ x ( s ) | ) + i = 1 m ρ i ( s ) ψ i ( | c D μ i x ( s ) | ) + j = 1 m ρ j ( s ) ψ j ( | c D ν j x ( s ) | ) + k = 1 m ρ k ( s ) ψ k ( | c D ξ k x ( s ) | ) ] d s + | b T ( a + b ) t | Γ ( 2 p ) | a + b | Γ ( α p ) T 1 p × 0 T ( T s ) α p 1 [ q 1 ( s ) φ 1 ( | x ( s ) | ) + q 2 ( s ) φ 2 ( | x ( s ) | ) + q 3 ( s ) φ 3 ( | x ( s ) | ) + q 4 ( s ) φ 4 ( | x ( s ) | ) + q 5 ( s ) φ 5 ( | ϕ x ( s ) | ) + q 6 ( s ) φ 6 ( | ψ x ( s ) | ) + i = 1 m ρ i ( s ) ψ i ( | c D μ i x ( s ) | ) + j = 1 m ρ j ( s ) ψ j ( | c D ν j x ( s ) | ) + k = 1 m ρ k ( s ) ψ k ( | c D ξ k x ( s ) | ) ] d s + | b p T 2 ( a + b ) ( 2 T t ( 2 p ) t 2 ) | Γ ( 3 q ) 2 | a + b | ( 2 p ) Γ ( α q ) T 2 q × 0 T ( T s ) α q 1 [ q 1 ( s ) φ 1 ( | x ( s ) | ) + q 2 ( s ) φ 2 ( | x ( s ) | ) + q 3 ( s ) φ 3 ( | x ( s ) | ) + q 4 ( s ) φ 4 ( | x ( s ) | ) + q 5 ( s ) φ 5 ( | ϕ x ( s ) | ) + q 6 ( s ) φ 6 ( | ψ x ( s ) | ) + i = 1 m ρ i ( s ) ψ i ( | c D μ i x ( s ) | ) + j = 1 m ρ j ( s ) ψ j ( | c D ν j x ( s ) | ) + k = 1 m ρ k ( s ) ψ k ( | c D ξ k x ( s ) | ) ] d s + ( | b ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) T 3 6 | a + b | ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ + ( a + b ) ( 6 ( q p ) T 2 t + ( 2 p ) ( 3 p ) ( 3 T t 2 + ( 3 q ) t 3 ) ) | Γ ( 4 γ ) 6 | a + b | ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ ) × 0 T ( T s ) α γ 1 [ q 1 ( s ) φ 1 ( | x ( s ) | ) + q 2 ( s ) φ 2 ( | x ( s ) | ) + q 3 ( s ) φ 3 ( | x ( s ) | ) + q 4 ( s ) φ 4 ( | x ( s ) | ) + q 5 ( s ) φ 5 ( | ϕ x ( s ) | ) + q 6 ( s ) φ 6 ( | ψ x ( s ) | ) + i = 1 m ρ i ( s ) ψ i ( | c D μ i x ( s ) | ) + j = 1 m ρ j ( s ) ψ j ( | c D ν j x ( s ) | ) + k = 1 m ρ k ( s ) ψ k ( | c D ξ k x ( s ) | ) ] d s [ q 1 1 φ 1 ( r ) + q 2 1 φ 2 ( r ) + q 3 1 φ 3 ( r ) + q 4 1 φ 4 ( r ) + q 5 1 φ 5 ( c 01 γ 0 + γ 0 [ l 11 + l 21 + l 31 + l 41 + l 51 T 1 δ 1 Γ ( 2 δ 1 ) + l 61 T 2 β 1 Γ ( 3 β 1 ) + l 71 T 3 θ 1 Γ ( 4 θ 1 ) ] r ) + q 6 1 φ 6 ( c 02 λ 0 + λ 0 [ l 12 + l 22 + l 32 + l 42 + l 52 T 1 δ 2 Γ ( 2 δ 2 ) + l 62 T 2 β 2 Γ ( 3 β 2 ) + l 72 T 3 θ 2 Γ ( 4 θ 2 ) ] r ) + i = 1 m ρ i 1 ψ i ( T 1 μ i Γ ( 2 μ i ) r ) + j = 1 m ρ j 1 ψ j ( T 2 ν j Γ ( 3 ν j ) r ) + k = 1 m ρ k 1 ψ k ( T 3 ξ k Γ ( 4 ξ k ) r ) ] × [ ( | a | + 2 | b | ) T α 1 | a + b | Γ ( α ) + ( | a | + 2 | b | ) Γ ( 2 p ) T α 1 | a + b | Γ ( α p ) + ( | b | p + | a + b | ( 4 p ) ) Γ ( 3 q ) T α 1 2 | a + b | ( 2 p ) Γ ( α q ) + ( [ | b | ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) 6 | a + b | ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) + | a + b | ( 6 ( q p ) + ( 2 p ) ( 3 p ) ( 6 q ) ) ] Γ ( 4 γ ) T α 1 6 | a + b | ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) ) ]

for all tI. In a similar manner, we obtain

| g ( t ) | [ q 1 1 φ 1 ( r ) + q 2 1 φ 2 ( r ) + q 3 1 φ 3 ( r ) + q 4 1 φ 4 ( r ) + q 5 1 φ 5 ( c 01 γ 0 + γ 0 [ l 11 + l 21 + l 31 + l 41 + l 51 T 1 δ 1 Γ ( 2 δ 1 ) + l 61 T 2 β 1 Γ ( 3 β 1 ) + l 71 T 3 θ 1 Γ ( 4 θ 1 ) ] r ) + q 6 1 φ 6 ( c 02 λ 0 + λ 0 [ l 12 + l 22 + l 32 + l 42 + l 52 T 1 δ 2 Γ ( 2 δ 2 ) + l 62 T 2 β 2 Γ ( 3 β 2 ) + l 72 T 3 θ 2 Γ ( 4 θ 2 ) ] r ) + i = 1 m ρ i 1 ψ i ( T 1 μ i Γ ( 2 μ i ) r ) + j = 1 m ρ j 1 ψ j ( T 2 ν j Γ ( 3 ν j ) r ) + k = 1 m ρ k 1 ψ k ( T 3 ξ k Γ ( 4 ξ k ) r ) ] × [ T α 2 Γ ( α 1 ) + Γ ( 2 p ) T α 2 Γ ( α p ) + ( 3 p ) Γ ( 3 q ) T α 2 ( 2 p ) Γ ( α q ) + [ 2 ( q p ) + ( 2 p ) ( 3 p ) ( 5 q ) ] Γ ( 4 γ ) T α 2 2 ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) ] , | g ( t ) | [ q 1 1 φ 1 ( r ) + q 2 1 φ 2 ( r ) + q 3 1 φ 3 ( r ) + q 4 1 φ 4 ( r ) + q 5 1 φ 5 ( c 01 γ 0 + γ 0 [ l 11 + l 21 + l 31 + l 41 + l 51 T 1 δ 1 Γ ( 2 δ 1 ) + l 61 T 2 β 1 Γ ( 3 β 1 ) + l 71 T 3 θ 1 Γ ( 4 θ 1 ) ] r ) + q 6 1 φ 6 ( c 02 λ 0 + λ 0 [ l 12 + l 22 + l 32 + l 42 + l 52 T 1 δ 2 Γ ( 2 δ 2 ) + l 62 T 2 β 2 Γ ( 3 β 2 ) + l 72 T 3 θ 2 Γ ( 4 θ 2 ) ] r ) + i = 1 m ρ i 1 ψ i ( T 1 μ i Γ ( 2 μ i ) r ) + j = 1 m ρ j 1 ψ j ( T 2 ν j Γ ( 3 ν j ) r ) + k = 1 m ρ k 1 ψ k ( T 3 ξ k Γ ( 4 ξ k ) r ) ] × [ T α 3 Γ ( α 2 ) + Γ ( 3 q ) T α 3 Γ ( α q ) + ( 4 q ) Γ ( 4 γ ) T α 3 ( 3 q ) Γ ( α γ ) ] ,

and

| g ( t ) | [ q 1 1 φ 1 ( r ) + q 2 1 φ 2 ( r ) + q 3 1 φ 3 ( r ) + q 4 1 φ 4 ( r ) + q 5 1 φ 5 ( c 01 γ 0 + γ 0 [ l 11 + l 21 + l 31 + l 41 + l 51 T 1 δ 1 Γ ( 2 δ 1 ) + l 61 T 2 β 1 Γ ( 3 β 1 ) + l 71 T 3 θ 1 Γ ( 4 θ 1 ) ] r ) + q 6 1 φ 6 ( c 02 λ 0 + λ 0 [ l 12 + l 22 + l 32 + l 42 + l 52 T 1 δ 2 Γ ( 2 δ 2 ) + l 62 T 2 β 2 Γ ( 3 β 2 ) + l 72 T 3 θ 2 Γ ( 4 θ 2 ) ] r ) + i = 1 m ρ i 1 ψ i ( T 1 μ i Γ ( 2 μ i ) r ) + j = 1 m ρ j 1 ψ j ( T 2 ν j Γ ( 3 ν j ) r ) + k = 1 m ρ k 1 ψ k ( T 3 ξ k Γ ( 4 ξ k ) r ) ] [ T α 4 Γ ( α 3 ) + Γ ( 4 γ ) T α 4 Γ ( α γ ) ]

for all tI. Thus, we get

g M 2 [ q 1 1 φ 1 ( r ) + q 2 1 φ 2 ( r ) + q 3 1 φ 3 ( r ) + q 4 1 φ 4 ( r ) + q 5 1 φ 5 ( c 01 γ 0 + γ 0 [ l 11 + l 21 + l 31 + l 41 + l 51 T 1 δ 1 Γ ( 2 δ 1 ) + l 61 T 2 β 1 Γ ( 3 β 1 ) + l 71 T 3 θ 1 Γ ( 4 θ 1 ) ] r ) + q 6 1 φ 6 ( c 02 λ 0 + λ 0 [ l 12 + l 22 + l 32 + l 42 + l 52 T 1 δ 2 Γ ( 2 δ 2 ) + l 62 T 2 β 2 Γ ( 3 β 2 ) + l 72 T 3 θ 2 Γ ( 4 θ 2 ) ] r ) + i = 1 m ρ i 1 ψ i ( T 1 μ i Γ ( 2 μ i ) r ) + j = 1 m ρ j 1 ψ j ( T 2 ν j Γ ( 3 ν j ) r ) + k = 1 m ρ k 1 ψ k ( T 3 ξ k Γ ( 4 ξ k ) r ) ] .

This implies that Ω maps bounded sets into bounded sets in X. Now, we show that Ω maps bounded sets of X into equicontinuous sets. Let t 1 , t 2 [0,T] with t 1 < t 2 , x B r , and gΩ(x). Then we have

| g ( t 2 ) g ( t 1 ) | 1 Γ ( α ) 0 t 1 [ ( t 2 s ) α 1 ( t 1 s ) α 1 ] | f ( s ) | d s + 1 Γ ( α ) t 1 t 2 ( t 2 s ) α 1 | f ( s ) | d s + ( t 2 t 1 ) Γ ( 2 p ) Γ ( α p ) T 1 p 0 T ( T s ) α p 1 | f ( s ) | d s + [ 2 T ( t 2 t 1 ) + ( 2 p ) ( t 2 2 t 1 2 ) ] Γ ( 3 q ) 2 ( 2 p ) Γ ( α q ) T 2 q 0 T ( T s ) α q 1 | f ( s ) | d s + [ 6 ( q p ) T 2 ( t 2 t 1 ) + ( 2 p ) ( 3 p ) ( 3 T ( t 2 2 t 1 2 ) + ( 3 q ) ( t 2 3 t 1 3 ) ) ] Γ ( 4 γ ) 6 ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ × 0 T ( T s ) α γ 1 | f ( s ) | d s [ φ 1 ( r ) + φ 2 ( r ) + φ 3 ( r ) + φ 4 ( r ) + φ 5 ( c 01 γ 0 + γ 0 [ l 11 + l 21 + l 31 + l 41 + l 51 T 1 δ 1 Γ ( 2 δ 1 ) + l 61 T 2 β 1 Γ ( 3 β 1 ) + l 71 T 3 θ 1 Γ ( 4 θ 1 ) ] r ) + φ 6 ( c 02 λ 0 + λ 0 [ l 12 + l 22 + l 32 + l 42 + l 52 T 1 δ 2 Γ ( 2 δ 2 ) + l 62 T 2 β 2 Γ ( 3 β 2 ) + l 72 T 3 θ 2 Γ ( 4 θ 2 ) ] r ) + i = 1 m ψ i ( T 1 μ i Γ ( 2 μ i ) r ) + j = 1 m ψ j ( T 2 ν j Γ ( 3 ν j ) r ) + k = 1 m ψ k ( T 3 ξ k Γ ( 4 ξ k ) r ) ] × [ 1 Γ ( α ) 0 t 1 [ ( t 2 s ) α 1 ( t 1 s ) α 1 ] × [ l = 1 6 q l ( s ) + i = 1 m ρ i ( s ) + j = 1 m ρ j ( s ) + k = 1 m ρ k ( s ) ] d s + 1 Γ ( α ) t 1 t 2 ( t 2 s ) α 1 [ l = 1 6 q l ( s ) + i = 1 m ρ i ( s ) + j = 1 m ρ j ( s ) + k = 1 m ρ k ( s ) ] d s + ( t 2 t 1 ) Γ ( 2 p ) Γ ( α p ) T 1 p 0 T ( T s ) α p 1 × [ l = 1 6 q l ( s ) + i = 1 m ρ i ( s ) + j = 1 m ρ j ( s ) + k = 1 m ρ k ( s ) ] d s + [ 2 T ( t 2 t 1 ) + ( 2 p ) ( t 2 2 t 1 2 ) ] Γ ( 3 q ) 2 ( 2 p ) Γ ( α q ) T 2 q × 0 T ( T s ) α q 1 [ l = 1 6 q l ( s ) + i = 1 m ρ i ( s ) + j = 1 m ρ j ( s ) + k = 1 m ρ k ( s ) ] d s + [ 6 ( q p ) T 2 ( t 2 t 1 ) + ( 2 p ) ( 3 p ) ( 3 T ( t 2 2 t 1 2 ) + ( 3 q ) ( t 2 3 t 1 3 ) ) ] Γ ( 4 γ ) 6 ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ × 0 T ( T s ) α γ 1 [ l = 1 6 q l ( s ) + i = 1 m ρ i ( s ) + j = 1 m ρ j ( s ) + k = 1 m ρ k ( s ) ] d s ] .

Proceeding as before, one can obtain

| g ( t 2 ) g ( t 1 ) | [ φ 1 ( r ) + φ 2 ( r ) + φ 3 ( r ) + φ 4 ( r ) + φ 5 ( c 01 γ 0 + γ 0 [ l 11 + l 21 + l 31 + l 41 + l 51 T 1 δ 1 Γ ( 2 δ 1 ) + l 61 T 2 β 1 Γ ( 3 β 1 ) + l 71 T 3 θ 1 Γ ( 4 θ 1 ) ] r ) + φ 6 ( c 02 λ 0 + λ 0 [ l 12 + l 22 + l 32 + l 42 + l 52 T 1 δ 2 Γ ( 2 δ 2 ) + l 62 T 2 β 2 Γ ( 3 β 2 ) + l 72 T 3 θ 2 Γ ( 4 θ 2 ) ] r ) + i = 1 m ψ i ( T 1 μ i Γ ( 2 μ i ) r ) + j = 1 m ψ j ( T 2 ν j Γ ( 3 ν j ) r ) + k = 1 m ψ k ( T 3 ξ k Γ ( 4 ξ k ) r ) ] × [ 1 Γ ( α 1 ) 0 t 1 [ ( t 2 s ) α 2 ( t 1 s ) α 2 ] × [ l = 1 6 q l ( s ) + i = 1 m ρ i ( s ) + j = 1 m ρ j ( s ) + k = 1 m ρ k ( s ) ] d s + 1 Γ ( α 1 ) t 1 t 2 ( t 2 s ) α 2 [ l = 1 6 q l ( s ) + i = 1 m ρ i ( s ) + j = 1 m ρ j ( s ) + k = 1 m ρ k ( s ) ] d s + ( t 2 t 1 ) Γ ( 3 q ) Γ ( α q ) T 2 q 0 T ( T s ) α q 1 × [ l = 1 6 q l ( s ) + i = 1 m ρ i ( s ) + j = 1 m ρ j ( s ) + k = 1 m ρ k ( s ) ] d s + [ 2 T ( t 2 t 1 ) + ( 3 q ) ( t 2 2 t 1 2 ) ] Γ ( 4 γ ) 2 ( 3 q ) Γ ( α γ ) T 3 γ × 0 T ( T s ) α γ 1 [ l = 1 6 q l ( s ) + i = 1 m ρ i ( s ) + j = 1 m ρ j ( s ) + k = 1 m ρ k ( s ) ] d s ] , | g ( t 2 ) g ( t 1 ) | [ φ 1 ( r ) + φ 2 ( r ) + φ 3 ( r ) + φ 4 ( r ) + φ 5 ( c 01 γ 0 + γ 0 [ l 11 + l 21 + l 31 + l 41 + l 51 T 1 δ 1 Γ ( 2 δ 1 ) + l 61 T 2 β 1 Γ ( 3 β 1 ) + l 71 T 3 θ 1 Γ ( 4 θ 1 ) ] r ) + φ 6 ( c 02 λ 0 + λ 0 [ l 12 + l 22 + l 32 + l 42 + l 52 T 1 δ 2 Γ ( 2 δ 2 ) + l 62 T 2 β 2 Γ ( 3 β 2 ) + l 72 T 3 θ 2 Γ ( 4 θ 2 ) ] r ) + i = 1 m ψ i ( T 1 μ i Γ ( 2 μ i ) r ) + j = 1 m ψ j ( T 2 ν j Γ ( 3 ν j ) r ) + k = 1 m ψ k ( T 3 ξ k Γ ( 4 ξ k ) r ) ] × [ 1 Γ ( α 2 ) 0 t 1 [ ( t 2 s ) α 3 ( t 1 s ) α 3 ] × [ l = 1 6 q l ( s ) + i = 1 m ρ i ( s ) + j = 1 m ρ j ( s ) + k = 1 m ρ k ( s ) ] d s + 1 Γ ( α 2 ) t 1 t 2 ( t 2 s ) α 3 [ l = 1 6 q l ( s ) + i = 1 m ρ i ( s ) + j = 1 m ρ j ( s ) + k = 1 m ρ k ( s ) ] d s + ( t 2 t 1 ) Γ ( 4 γ ) Γ ( α γ ) T 3 γ 0 T ( T s ) α γ 1 × [ l = 1 6 q l ( s ) + i = 1 m ρ i ( s ) + j = 1 m ρ j ( s ) + k = 1 m ρ k ( s ) ] d s ] ,

and

| g ( t 2 ) g ( t 1 ) | [ φ 1 ( r ) + φ 2 ( r ) + φ 3 ( r ) + φ 4 ( r ) + φ 5 ( c 01 γ 0 + γ 0 [ l 11 + l 21 + l 31 + l 41 + l 51 T 1 δ 1 Γ ( 2 δ 1 ) + l 61 T 2 β 1 Γ ( 3 β 1 ) + l 71 T 3 θ 1 Γ ( 4 θ 1 ) ] r ) + φ 6 ( c 02 λ 0 + λ 0 [ l 12 + l 22 + l 32 + l 42 + l 52 T 1 δ 2 Γ ( 2 δ 2 ) + l 62 T 2 β 2 Γ ( 3 β 2 ) + l 72 T 3 θ 2 Γ ( 4 θ 2 ) ] r ) + i = 1 m ψ i ( T 1 μ i Γ ( 2 μ i ) r ) + j = 1 m ψ j ( T 2 ν j Γ ( 3 ν j ) r ) + k = 1 m ψ k ( T 3 ξ k Γ ( 4 ξ k ) r ) ] × [ 1 Γ ( α 3 ) 0 t 1 [ ( t 2 s ) α 4 ( t 1 s ) α 4 ] × [ l = 1 6 q l ( s ) + i = 1 m ρ i ( s ) + j = 1 m ρ j ( s ) + k = 1 m ρ k ( s ) ] d s + 1 Γ ( α 3 ) t 1 t 2 ( t 2 s ) α 4 [ l = 1 6 q l ( s ) + i = 1 m ρ i ( s ) + j = 1 m ρ j ( s ) + k = 1 m ρ k ( s ) ] d s ] .

It is easy to see that the right-hand side of the above inequalities tends to zero as t 2 t 1 0 (independent on x B r ). Thus, by using the Arzela-Ascoli theorem, we see that Ω:XP(X) is a compact multivalued map. Next, we show that Ω has a closed graph. Let x n x , g n Ω( x n ) for all n and g n g . We show that g Ω( x ). Since g n Ω( x n ) for all n, there exists f n S F , x n such that

g n ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 f n ( s ) d s b ( a + b ) Γ ( α ) 0 T ( T s ) α 1 f n ( s ) d s + [ b T ( a + b ) t ] Γ ( 2 p ) ( a + b ) Γ ( α p ) T 1 p 0 T ( T s ) α p 1 f n ( s ) d s [ b p T 2 ( a + b ) ( 2 T t ( 2 p ) t 2 ) ] Γ ( 3 q ) 2 ( a + b ) ( 2 p ) Γ ( α q ) T 2 q 0 T ( T s ) α q 1 f n ( s ) d s ( [ b ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) T 3 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ + ( a + b ) ( 6 ( q p ) T 2 t + ( 2 p ) ( 3 p ) ( 3 T t 2 + ( 3 q ) t 3 ) ) ] Γ ( 4 γ ) 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ ) × 0 T ( T s ) α γ 1 f n ( s ) d s

for all tI. Thus, we have to show that there exists f S F , x such that

g ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 f ( s ) d s b ( a + b ) Γ ( α ) 0 T ( T s ) α 1 f ( s ) d s + [ b T ( a + b ) t ] Γ ( 2 p ) ( a + b ) Γ ( α p ) T 1 p 0 T ( T s ) α p 1 f ( s ) d s [ b p T 2 ( a + b ) ( 2 T t ( 2 p ) t 2 ) ] Γ ( 3 q ) 2 ( a + b ) ( 2 p ) Γ ( α q ) T 2 q 0 T ( T s ) α q 1 f ( s ) d s ( [ b ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) T 3 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ + ( a + b ) ( 6 ( q p ) T 2 t + ( 2 p ) ( 3 p ) ( 3 T t 2 + ( 3 q ) t 3 ) ) ] Γ ( 4 γ ) 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ ) × 0 T ( T s ) α γ 1 f ( s ) d s

for all tI. Consider the linear continuous operator θ: L 1 (I,R)X defined by fθ(f)(t), where

θ ( f ) ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 f ( s ) d s b ( a + b ) Γ ( α ) 0 T ( T s ) α 1 f ( s ) d s + [ b T ( a + b ) t ] Γ ( 2 p ) ( a + b ) Γ ( α p ) T 1 p 0 T ( T s ) α p 1 f ( s ) d s [ b p T 2 ( a + b ) ( 2 T t ( 2 p ) t 2 ) ] Γ ( 3 q ) 2 ( a + b ) ( 2 p ) Γ ( α q ) T 2 q 0 T ( T s ) α q 1 f ( s ) d s ( [ b ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) T 3 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ + ( a + b ) ( 6 ( q p ) T 2 t + ( 2 p ) ( 3 p ) ( 3 T t 2 + ( 3 q ) t 3 ) ) ] Γ ( 4 γ ) 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ ) × 0 T ( T s ) α γ 1 f ( s ) d s

for all tI. Since θ is a linear continuous map, therefore, by Lemma 4.1, it follows that θ S F is a closed graph operator. Note that g n θ S F ( x n ) for all n. Since x n x and g n g , there exists f S F ( x ) such that

g ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 f ( s ) d s b ( a + b ) Γ ( α ) 0 T ( T s ) α 1 f ( s ) d s + [ b T ( a + b ) t ] Γ ( 2 p ) ( a + b ) Γ ( α p ) T 1 p 0 T ( T s ) α p 1 f ( s ) d s [ b p T 2 ( a + b ) ( 2 T t ( 2 p ) t 2 ) ] Γ ( 3 q ) 2 ( a + b ) ( 2 p ) Γ ( α q ) T 2 q 0 T ( T s ) α q 1 f ( s ) d s ( [ b ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) T 3 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ + ( a + b ) ( 6 ( q p ) T 2 t + ( 2 p ) ( 3 p ) ( 3 T t 2 + ( 3 q ) t 3 ) ) ] Γ ( 4 γ ) 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ ) × 0 T ( T s ) α γ 1 f ( s ) d s

for all tI. Let λ(0,1) and xλΩ(x), then there exists f S F , x such that

x ( t ) = 1 Γ ( α ) 0 t λ ( t s ) α 1 f ( s ) d s b ( a + b ) Γ ( α ) 0 T λ ( T s ) α 1 f ( s ) d s + [ b T ( a + b ) t ] Γ ( 2 p ) ( a + b ) Γ ( α p ) T 1 p 0 T λ ( T s ) α p 1 f ( s ) d s [ b p T 2 ( a + b ) ( 2 T t ( 2 p ) t 2 ) ] Γ ( 3 q ) 2 ( a + b ) ( 2 p ) Γ ( α q ) T 2 q 0 T λ ( T s ) α q 1 f ( s ) d s ( [ b ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) T 3 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ + ( a + b ) ( 6 ( q p ) T 2 t + ( 2 p ) ( 3 p ) ( 3 T t 2 + ( 3 q ) t 3 ) ) ] Γ ( 4 γ ) 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ ) × 0 T λ ( T s ) α γ 1 f ( s ) d s

for all tI. Hence

x = sup t I | x ( t ) | + sup t I | x ( t ) | + sup t I | x ( t ) | + sup t I | x ( t ) | M 2 [ q 1 1 φ 1 ( x ) + q 2 1 φ 2 ( x ) + q 3 1 φ 3 ( x ) + q 4 1 φ 4 ( x ) + q 5 1 φ 5 ( c 01 γ 0 + γ 0 [ l 11 + l 21 + l 31 + l 41 + l 51 T 1 δ 1 Γ ( 2 δ 1 ) + l 61 T 2 β 1 Γ ( 3 β 1 ) + l 71 T 3 θ 1 Γ ( 4 θ 1 ) ] x ) + q 6 1 φ 6 ( c 02 λ 0 + λ 0 [ l 12 + l 22 + l 32 + l 42 + l 52 T 1 δ 2 Γ ( 2 δ 2 ) + l 62 T 2 β 2 Γ ( 3 β 2 ) + l 72 T 3 θ 2 Γ ( 4 θ 2 ) ] x ) + i = 1 m ρ i 1 ψ i ( T 1 μ i Γ ( 2 μ i ) x ) + j = 1 m ρ j 1 ψ j ( T 2 ν j Γ ( 3 ν j ) x ) + k = 1 m ρ k 1 ψ k ( T 3 ξ k Γ ( 4 ξ k ) x ) ] = M 2 A ( x )

and so x M 2 A ( x ) 1. Letting U={xX:x<D}, the operator Ω: U ¯ P c p , c (X) is upper semi-continuous and compact. In view of the choice of U, there is no xU such that xλΩ(x) for some λ(0,1) and so Ω has a fixed point x U ¯ by virtue of Theorem 4.3. Obviously, each fixed point of Ω is a solution of problem (1.2)-(1.3). This completes the proof. □

Our next result deals with the case that F is not necessary convex valued.

Theorem 4.6

Suppose that F:I× R 6 + m + m + m P c p (R) is a multifunction such that the map

(t, x 1 , x 2 ,, x 6 + m + m + m )F(t, x 1 , x 2 ,, x 6 + m + m + m )

is L(I)B(R)B(R)B(R) measurable and the map

( x 1 , x 2 ,, x 6 + m + m + m )F(t, x 1 , x 2 ,, x 6 + m + m + m )

is lower semi-continuous for almost alltI. Assume that there exist continuous nondecreasing functions φ i :[0,)(0,)for1i6, ψ i , ψ j , ψ k :[0,)(0,)for1im, 1j m , and1k m and nonnegative functions q i L 1 (I)for1i6, ρ i , ρ j , ρ k L 1 (I)for1im, 1j m , and1k m such that

F ( t , x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , y 1 , y 2 , , y m , z 1 , z 2 , , z m , w 1 , w 2 , , w m ) p = sup { | y | : y F ( t , x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , y 1 , y 2 , , y m , z 1 , z 2 , , z m , w 1 , w 2 , , w m ) } q 1 ( t ) φ 1 ( | x 1 | ) + q 2 ( t ) φ 2 ( | x 2 | ) + q 3 ( t ) φ 3 ( | x 3 | ) + q 4 ( t ) φ 4 ( | x 4 | ) + q 5 ( t ) φ 5 ( | x 5 | ) + q 6 ( t ) φ 6 ( | x 6 | ) + i = 1 m ρ i ( t ) ψ i ( | y i | ) + j = 1 m ρ j ( t ) ψ j ( | z j | ) + k = 1 m ρ k ( t ) ψ k ( | w k | ) ,

for alltI, x i , y i , z j , w k Rfor1i6, 1im, 1j m , and1k m . Furthermore, there exist positive constants c 01 , c 02 >0, and l i 1 , l i 2 0for1i7such that

| h j ( t , s , u 1 , u 2 , u 3 , u 4 , u 5 , u 6 , u 7 ) | c 0 j + i = 1 7 l i j | u i |

forj=1,2, t,sIand all u i Rfor1i7. If there exists a constantD>0such that D M 2 A ( D ) >1, then problem (1.2)-(1.3) has at least one solution, where

A ( D ) = q 1 1 φ 1 ( D ) + q 2 1 φ 2 ( D ) + q 3 1 φ 3 ( D ) + q 4 1 φ 4 ( D ) + q 5 1 φ 5 ( c 01 γ 0 + γ 0 [ l 11 + l 21 + l 31 + l 41 + l 51 T 1 γ 1 Γ ( 2 γ 1 ) + l 61 T 2 β 1 Γ ( 3 β 1 ) + l 71 T 3 θ 1 Γ ( 4 θ 1 ) ] D ) + q 6 1 φ 6 ( c 02 λ 0 + λ 0 [ l 12 + l 22 + l 32 + l 42 + l 52 T 1 γ 2 Γ ( 2 γ 2 ) + l 62 T 2 β 2 Γ ( 3 β 2 ) + l 72 T 3 θ 2 Γ ( 4 θ 2 ) ] D ) + i = 1 m ρ i 1 ψ i ( T 1 μ i Γ ( 2 μ i ) D ) + j = 1 m ρ j 1 ψ j ( T 2 ν j Γ ( 3 ν j ) D ) + k = 1 m ρ k 1 ψ k ( T 3 ξ k Γ ( 4 ξ k ) D ) .

Proof

In view of the given assumptions and Lemma 4.1 in [46], it follows that F is of lower semi-continuous type. Thus, by Lemma 4.2, there exists a continuous function f:X L 1 (I,R) such that f(x) S F (x) for all xX. Now, consider the equation

D α c x(t)=f(x)(t)
(4.1)

supplemented with boundary conditions (1.3). Note that each solution of problem (4.1)-(1.3) with the given conditions is a solution of problem (1.2)-(1.3). Define the operator Ω ¯ :XX by

Ω ¯ x ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 f ( x ) ( s ) d s b ( a + b ) Γ ( α ) 0 T ( T s ) α 1 f ( x ) ( s ) d s + [ b T ( a + b ) t ] Γ ( 2 p ) ( a + b ) Γ ( α p ) T 1 p 0 T ( T s ) α p 1 f ( x ) ( s ) d s [ b p T 2 ( a + b ) ( 2 T t ( 2 p ) t 2 ) ] Γ ( 3 q ) 2 ( a + b ) ( 2 p ) Γ ( α q ) T 2 q 0 T ( T s ) α q 1 f ( x ) ( s ) d s ( [ b ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) T 3 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ + ( a + b ) ( 6 ( q p ) T 2 t + ( 2 p ) ( 3 p ) ( 3 T t 2 + ( 3 q ) t 3 ) ) ] Γ ( 4 γ ) 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ ) × 0 T ( T s ) α γ 1 f ( x ) ( s ) d s

for all tI. Following the procedure employed in the last result, one can show that Ω ¯ is continuous and completely continuous and satisfies all conditions of the nonlinear alternative of Leary-Schauder type for single-valued maps. Consequently, there exists a solution for problem (4.1)-(1.3). This completes the proof. □

Finally, we establish the existence of a solution for the case that the right-hand side of (1.2) is non-convex valued.

Theorem 4.7

Assume that F:I× R 6 + m + m + m P c p (R) is a multifunction such that the map

tF(t, x 1 , x 2 ,, x 6 + m + m + m )

is measurable for all x 1 ,, x 6 + m + m + m R, the mapt d H (0,F(t,0,0,,0))is integrably bounded for almost alltIand there are nonnegative functions k 1 ,, k 6 L 1 (I), m 1 ,, m m , m 1 ,, m m , m 1 ,, m m L 1 (I)such that

d H ( F ( t , x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , y 1 , y 2 , , y m , z 1 , z 2 , , z m , w 1 , w 2 , , w m ) , F ( t , x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , y 1 , y 2 , , y m , z 1 , z 2 , , z m , w 1 , w 2 , , w m ) ) k 1 ( t ) | x 1 x 1 | + k 2 ( t ) | x 2 x 2 | + k 3 ( t ) | x 3 x 3 | + k 4 ( t ) | x 4 x 4 | + k 5 ( t ) | x 5 x 5 | + k 6 ( t ) | x 6 x 6 | + i = 1 m m i ( t ) | y i y i | + j = 1 m m j ( t ) | z j z j | + k = 1 m m k ( t ) | w k w k |

for almost alltIand all x 1 ,, x 6 , x 1 ,, x 6 , y 1 ,, y m , y 1 ,, y m , z 1 ,, z m , z 1 ,, z m , w 1 ,, w m , w 1 ,, w m R. Also, suppose that there exist η 11 ,, η 71 , η 12 ,, η 72 0such that

| h j ( t , s , u 1 , u 2 , u 3 , u 4 , u 5 , u 6 , u 7 ) h j ( t , s , u 1 , u 2 , u 3 , u 4 , u 5 , u 6 , u 7 ) | i = 1 7 η i j | u i u i |

for allt,sI, u 1 ,, u 7 , u 1 ,, u 7 R, andj=1,2. IfΘ<1, then problem (1.2)-(1.3) has at least one solution, where

Θ = M 2 [ k 1 1 + k 2 1 + k 3 1 + k 4 1 + k 5 1 γ 0 ( η 11 + η 21 + η 31 + η 41 + η 51 T 1 δ 1 Γ ( 2 δ 1 ) + η 61 T 2 β 1 Γ ( 3 β 1 ) + η 71 T 3 θ 1 Γ ( 4 θ 1 ) ) + k 6 1 λ 0 ( η 12 + η 22 + η 32 + η 42 + η 52 T 1 δ 2 Γ ( 2 δ 2 ) + η 62 T 2 β 2 Γ ( 3 β 2 ) + η 72 T 3 θ 2 Γ ( 4 θ 2 ) ) + i = 1 m m i 1 T 1 μ i Γ ( 2 μ i ) + j = 1 m m j 1 T 2 ν j Γ ( 3 ν j ) + k = 1 m m k 1 T 3 ξ k Γ ( 4 ξ k ) ] .

Proof

With the given assumptions and Theorem III-6 (the measurable selection theorem) in [47], one can infer that F admits a measurable selection f:IR. Since F is integrably bounded, f L 1 (I,R), so S F , x for all xX. Now, we show that the operator Ω satisfies the assumptions of Theorem 4.4. First, we show that Ω(x) P c l (X) for all xX. Let u n Ω(x) for all n0 and u n u for some uX. For each n, choose v n S F , x such that

u n ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 v n ( s ) d s b ( a + b ) Γ ( α ) 0 T ( T s ) α 1 v n ( s ) d s + [ b T ( a + b ) t ] Γ ( 2 p ) ( a + b ) Γ ( α p ) T 1 p 0 T ( T s ) α p 1 v n ( s ) d s [ b p T 2 ( a + b ) ( 2 T t ( 2 p ) t 2 ) ] Γ ( 3 q ) 2 ( a + b ) ( 2 p ) Γ ( α q ) T 2 q 0 T ( T s ) α q 1 v n ( s ) d s ( [ b ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) T 3 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ + ( a + b ) ( 6 ( q p ) T 2 t + ( 2 p ) ( 3 p ) ( 3 T t 2 + ( 3 q ) t 3 ) ) ] Γ ( 4 γ ) 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ ) × 0 T ( T s ) α γ 1 v n ( s ) d s

for all tI. Since F has compact values, there is a subsequence of { v n } that converges to v in L 1 (I,R). Thus, v S F , x and

u n ( t ) u ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 v ( s ) d s b ( a + b ) Γ ( α ) 0 T ( T s ) α 1 v ( s ) d s + [ b T ( a + b ) t ] Γ ( 2 p ) ( a + b ) Γ ( α p ) T 1 p 0 T ( T s ) α p 1 v ( s ) d s [ b p T 2 ( a + b ) ( 2 T t ( 2 p ) t 2 ) ] Γ ( 3 q ) 2 ( a + b ) ( 2 p ) Γ ( α q ) T 2 q 0 T ( T s ) α q 1 v ( s ) d s ( [ b ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) T 3 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ + ( a + b ) ( 6 ( q p ) T 2 t + ( 2 p ) ( 3 p ) ( 3 T t 2 + ( 3 q ) t 3 ) ) ] Γ ( 4 γ ) 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ ) × 0 T ( T s ) α γ 1 v ( s ) d s

for all tI. This implies that uΩ(x). Next, we show that there exists Θ<1 such that

d H ( Ω ( z ) , Ω ( z ˜ ) ) Θz z ˜

for all z, z ˜ X. Let z, z ˜ X and g 1 Ω(z). Choose f 1 S F , z such that

g 1 ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 f 1 ( s ) d s b ( a + b ) Γ ( α ) 0 T ( T s ) α 1 f 1 ( s ) d s + [ b T ( a + b ) t ] Γ ( 2 p ) ( a + b ) Γ ( α p ) T 1 p 0 T ( T s ) α p 1 f 1 ( s ) d s [ b p T 2 ( a + b ) ( 2 T t ( 2 p ) t 2 ) ] Γ ( 3 q ) 2 ( a + b ) ( 2 p ) Γ ( α q ) T 2 q 0 T ( T s ) α q 1 f 1 ( s ) d s ( [ b ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) T 3 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ + ( a + b ) ( 6 ( q p ) T 2 t + ( 2 p ) ( 3 p ) ( 3 T t 2 + ( 3 q ) t 3 ) ) ] Γ ( 4 γ ) 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ ) × 0 T ( T s ) α γ 1 f 1 ( s ) d s

for all tI. On the other hand we have

d H ( F ˜ ( t , z ( t ) ) , F ˜ ( t , z ˜ ( t ) ) ) [ k 1 ( t ) + k 2 ( t ) + k 3 ( t ) + k 4 ( t ) + k 5 ( t ) γ 0 ( η 11 + η 21 + η 31 + η 41 + η 51 T 1 δ 1 Γ ( 2 δ 1 ) + η 61 T 2 β 1 Γ ( 3 β 1 ) + η 71 T 3 θ 1 Γ ( 4 θ 1 ) ) + k 6 ( t ) λ 0 ( η 12 + η 22 + η 32 + η 42 + η 52 T 1 δ 2 Γ ( 2 δ 2 ) + η 62 T 2 β 2 Γ ( 3 β 2 ) + η 72 T 3 θ 2 Γ ( 4 θ 2 ) ) + i = 1 m m i ( t ) T 1 μ i Γ ( 2 μ i ) + j = 1 m m j ( t ) T 2 ν j Γ ( 3 ν j ) + k = 1 m m k ( t ) T 3 ξ k Γ ( 4 ξ k ) ] z z ˜

for almost all tI. Hence, there exists w t F ˜ (t, z ˜ (t)) such that

| f 1 ( t ) w t | [ k 1 ( t ) + k 2 ( t ) + k 3 ( t ) + k 4 ( t ) + k 5 ( t ) γ 0 ( η 11 + η 21 + η 31 + η 41 + η 51 T 1 δ 1 Γ ( 2 δ 1 ) + η 61 T 2 β 1 Γ ( 3 β 1 ) + η 71 T 3 θ 1 Γ ( 4 θ 1 ) ) + k 6 ( t ) λ 0 ( η 12 + η 22 + η 32 + η 42 + η 52 T 1 δ 2 Γ ( 2 δ 2 ) + η 62 T 2 β 2 Γ ( 3 β 2 ) + η 72 T 3 θ 2 Γ ( 4 θ 2 ) ) + i = 1 m m i ( t ) T 1 μ i Γ ( 2 μ i ) + j = 1 m m j ( t ) T 2 ν j Γ ( 3 ν j ) + k = 1 m m k ( t ) T 3 ξ k Γ ( 4 ξ k ) ] z z ˜ : = M t

for almost all tI. Define V:IP(R) by V(t)={uR:| f 1 (t)u| M t } for all tI. By Theorem III-41 in [47], it follows that V is measurable. Since the multivalued operator tV(t) F ˜ (t, z ˜ (t)) is measurable (Proposition III-4 in [47]), there exists a function f 2 S F , z ˜ such that

| f 1 ( t ) f 2 ( t ) | [ k 1 ( t ) + k 2 ( t ) + k 3 ( t ) + k 4 ( t ) + k 5 ( t ) γ 0 ( η 11 + η 21 + η 31 + η 41 + η 51 T 1 δ 1 Γ ( 2 δ 1 ) + η 61 T 2 β 1 Γ ( 3 β 1 ) + η 71 T 3 θ 1 Γ ( 4 θ 1 ) ) + k 6 ( t ) λ 0 ( η 12 + η 22 + η 32 + η 42 + η 52 T 1 δ 2 Γ ( 2 δ 2 ) + η 62 T 2 β 2 Γ ( 3 β 2 ) + η 72 T 3 θ 2 Γ ( 4 θ 2 ) ) + i = 1 m m i ( t ) T 1 μ i Γ ( 2 μ i ) + j = 1 m m j ( t ) T 2 ν j Γ ( 3 ν j ) + k = 1 m m k ( t ) T 3 ξ k Γ ( 4 ξ k ) ] z z ˜

for almost all tI. Define

g 2 ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 f 2 ( s ) d s b ( a + b ) Γ ( α ) 0 T ( T s ) α 1 f 2 ( s ) d s + [ b T ( a + b ) t ] Γ ( 2 p ) ( a + b ) Γ ( α p ) T 1 p 0 T ( T s ) α p 1 f 2 ( s ) d s [ b p T 2 ( a + b ) ( 2 T t ( 2 p ) t 2 ) ] Γ ( 3 q ) 2 ( a + b ) ( 2 p ) Γ ( α q ) T 2 q 0 T ( T s ) α q 1 f 2 ( s ) d s ( [ b ( 6 ( q p ) + ( 2 p ) ( 3 p ) q ) T 3 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ + ( a + b ) ( 6 ( q p ) T 2 t + ( 2 p ) ( 3 p ) ( 3 T t 2 + ( 3 q ) t 3 ) ) ] Γ ( 4 γ ) 6 ( a + b ) ( 2 p ) ( 3 p ) ( 3 q ) Γ ( α γ ) T 3 γ ) × 0 T ( T s ) α γ 1 f 2 ( s ) d s

for all tI. Then we have

g 1 g 2 = sup t I | g 1 ( t ) g 2 ( t ) | + sup t I | g 1 ( t ) g 2 ( t ) | + sup t I | g 1 ( t ) g 2 ( t ) | + sup t I | g 1 ( t ) g 2 ( t ) | M 2 [ k 1 1 + k 2 1 + k 3 1 + k 4 1 + k 5 1 γ 0 ( η 11 + η 21 + η 31 + η 41 + η 51 T 1 δ 1 Γ ( 2 δ 1 ) + η 61 T 2 β 1 Γ ( 3 β 1 ) + η 71 T 3 θ 1 Γ ( 4 θ 1 ) ) + k 6 1 λ 0 ( η 12 + η 22 + η 32 + η 42 + η 52 T 1 δ 2 Γ ( 2 δ 2 ) + η 62 T 2 β 2 Γ ( 3 β 2 ) + η 72 T 3 θ 2 Γ ( 4 θ 2 ) ) + i = 1 m m i 1 T 1 μ i Γ ( 2 μ i ) + j = 1 m m j 1 T 2 ν j Γ ( 3 ν j ) + k = 1 m m k 1 T 3 ξ k Γ ( 4 ξ k ) ] z z ˜ = Θ z z ˜ .

Further, interchanging the roles of z and z ˜ , we get

d H ( Ω ( z ) , Ω ( z ˜ ) ) Θz z ˜ .

Since Θ<1, Ω is a contraction and so by Theorem 4.4, Ω has a fixed point which corresponds to a solution of problem (1.2)-(1.3). □

5 Examples

This section is devoted to the illustration of Theorems 4.5 and 4.7.

Example 5.1

Consider the fractional differential inclusion

D 9 2 c x ( t ) F ( t , x ( t ) , x ( t ) , x ( t ) , x ( t ) , φ x ( t ) , D 2 5 c x ( t ) , c D 4 3 x ( t ) , c D 7 3 x ( t ) , c D 13 6 x ( t ) ) , t [ 0 , 1 ]
(5.1)

supplemented with the boundary conditions x ( 4 ) (0)=0, 1 5 x(0)+ 1 2 x(1)=0, D 1 3 c x(0)= c D 1 3 x(1), D 7 5 c x(0)= c D 7 5 x(1), and D 9 4 c x(0)= c D 9 4 x(1) where

φ x ( t ) = 0 t e ( s t ) / 2 900 [ e π t 16 ( 1 + t 2 ) + 2 x ( s ) 517 ( 1 + t ) ( 2 + sin x ( s ) ) + 5 e s t x ( s ) 327 ( s 2 + 7 ) + π 3 x ( s ) x ( s ) 984 ( 1 + | x ( s ) | ) + 3 e cos 2 x ( s ) x ( s ) 895 ( s 2 + 1 ) + sin x ( s ) c D 1 4 x ( s ) 1 , 875 1 + | c D 1 4 x ( s ) | + | c D 5 3 x ( s ) | + e π cos 2 x ( s ) c D 5 3 x ( s ) 3 , 641 ( s 2 + 2 s + 1 ) + D 11 5 c x ( s ) 6 , 795 ( 1 + | x ( s ) | ) ] d s .

Here α= 9 2 , μ 1 = 2 5 , ν 1 = 4 3 , ξ 1 = 7 3 , ξ 2 = 13 6 , p= 1 3 , q= 7 5 , γ= 9 4 , a= 1 5 , b= 1 2 , δ 1 = 1 4 , β 1 = 5 3 , θ 1 = 11 5 , c 01 = 1 16 , l 11 = 2 517 , l 21 = 5 2 , 289 , l 31 = π 3 984 , l 41 = 3 895 , l 51 = 1 1 , 875 , l 61 = e π 3 , 641 , l 71 = 1 6 , 795 , γ 0 = e 1 450 . Define the multifunction F:[0,1]× R 9 P(R) by

F ( t , x 1 , x 2 , x 3 , x 4 , x 5 , y 1 , z 1 , w 1 , w 2 ) = { u R : | x 1 | 3 4 ( 3 + | x 1 | 3 ) e π t 5 sin 2 x 2 | x 5 | 13 ( 4 + sin 2 x 1 ) 2 9 | y 1 | 10 ( 4 + | y 1 | ) t 3 9 cos 2 z 1 e π t 2 81 ( t 4 + 3 ) | w 1 | t 1 3 20 ( 1 + | w 2 | ) u 1 3 e | x 1 | + 7 e π t 2 18 ( 1 + t x 2 2 ) + | x 4 | 10 ( 1 + | x 4 | ) + t 3 2 | x 5 + sin x 5 | 119 + e t t 4 + 2 sin 4 y 1 + e 3 2 t 5 1 + | z 1 | 5 2 + t 135 ( t 2 + 1 ) | w 1 + x 3 1 + | x 3 | | + 31 | w 2 | 3 140 ( 1 + | w 2 | 3 ) + 3 2 }

and note that

F ( t , x 1 , x 2 , x 3 , x 4 , x 5 , y 1 , z 1 , w 1 , w 2 ) p = sup { | v | : v F ( t , x 1 , x 2 , x 3 , x 4 , x 5 , y 1 , z 1 , w 1 , w 2 ) } 4 , 591 1 , 260 + 1 119 ( | x 5 | + 1 ) + 1 135 ( | w 1 | + 1 )

for all t[0,1] and x 1 , x 2 , x 3 , x 4 , x 5 , y 1 , z 1 , w 1 , w 2 R. It is clear that F has convex and compact values and is of Carathéodory type. Let q 1 (t)=1, φ 1 (| x 1 |)= 4 5 , q 2 (t)=1, φ 2 (| x 2 |)= 1 2 , q 3 (t)=1, φ 3 (| x 3 |)= 1 5 , q 4 (t)=1, φ 4 (| x 4 |)= 1 2 , q 5 (t)=1, φ 5 (| x 5 |)= 1 119 (| x 5 |+1), ρ 1 (t)=1, ψ 1 (| y 1 |)= 8 9 , ρ 1 (t)=1, ψ 1 (| z 1 |)= 1 60 , ρ 1 (t)=1, ψ 1 (| w 1 |)= 1 135 (| w 1 |+1), ρ 2 (t)=1, and ψ 2 (| w 2 |)= 31 42 for all t[0,1] and x 1 , x 2 , x 3 , x 4 , x 5 , y 1 , z 1 , w 1 , w 2 R. Hence,

F ( t , x 1 , x 2 , x 3 , x 4 , x 5 , y 1 , z 1 , w 1 , w 2 ) p = sup { | v | : v F ( t , x 1 , x 2 , x 3 , x 4 , x 5 , y 1 , z 1 , w 1 , w 2 ) } q 1 ( t ) φ 1 ( | x 1 | ) + q 2 ( t ) φ 2 ( | x 2 | ) + q 3 ( t ) φ 3 ( | x 3 | ) + q 4 ( t ) φ 4 ( | x 4 | ) + q 5 ( t ) φ 5 ( | x 5 | ) + ρ 1 ( t ) ψ 1 ( | y 1 | ) + ρ 1 ( t ) ψ 1 ( | z 1 | ) + ρ 1 ( t ) ψ 1 ( | w 1 | ) + ρ 2 ( t ) ψ 2 ( | w 2 | )

for all t[0,1] and x 1 , x 2 , x 3 , x 4 , x 5 , y 1 , z 1 , w 1 , w 2 R. With the given values, it is found that M 2 8.609986787. Letting D>33.90317546, all the conditions of Theorem 4.5 hold and consequently problem (5.1) has at least one solution.

Example 5.2

Consider the fractional differential inclusion

D 16 3 c x ( t ) F ( t , x ( t ) , x ( t ) , x ( t ) , x ( t ) , φ x ( t ) , D 1 19 c x ( t ) , c D 2 15 x ( t ) , c D 20 17 x ( t ) , c D 11 5 x ( t ) ) , t [ 0 , 1 ]
(5.2)

with the boundary value problems x ( 4 ) (0)= x ( 5 ) (0)=0, x(0)3x(1)=0, D 3 20 c x(0)= c D 3 20 x(1), D 15 14 c x(0)= c D 15 14 x(1), and D 19 9 c x(0)= c D 19 9 x(1), where

φ x ( t ) = 0 t ( s t ) 2 e ( s t ) 3 1 , 350 [ t 3 cos 2 t e π t ( 1 + t 2 ) + | x ( s ) + x ( s ) + c D 1 12 x ( s ) | 9 , 416 π ( 1 + | x ( s ) + x ( s ) + c D 1 12 x ( s ) | ) + t 3 sin 2 t cos s 759 ( 36 π + e 3 s ) arctan ( 3 2 + | x ( s ) + c D 7 4 x ( s ) | 1 + | x ( s ) + c D 7 4 x ( s ) | ) + e s t 8 , 190 ( 1 + e s t ) cos x ( s ) + s 2 e π s 3 | c D 41 20 x ( s ) | ( 1 , 200 + arcsin ( 1 3 ) e 3 t 2 ) ( 1 + | c D 41 20 x ( s ) | ) ] d s .

Here α= 16 3 , μ 1 = 1 19 , μ 2 = 2 15 , ν 1 = 20 17 , ξ 1 = 11 5 , p= 3 20 , q= 15 14 , γ= 19 9 , a=1, b=3, δ 1 = 1 12 , β 1 = 7 4 , θ 1 = 41 20 , n 11 = n 21 = n 51 = 1 9 , 416 π , n 31 = n 61 = 1 759 ( 36 π + 1 ) , n 41 = 1 8 , 190 , n 71 = 1 1 , 200 + arcsin ( 1 3 ) , γ 0 = e 1 4 , 050 . We define the multifunction F:[0,1]× R 9 P(R) as

F ( t , x 1 , x 2 , x 3 , x 4 , x 5 , y 1 , y 2 , z 1 , w 1 ) = [ e π t 1 + t 2 arctan ( 1 + e t | x 1 + x 2 + x 3 + x 4 | 9 , 600 ( 1 3 + e t ) ( 1 + | x 1 + x 2 + x 3 + x 4 | ) ) , cos 2 t ] [ 7 + sin π t 2 + t 3 , 20 ( t 3 + 1 ) + cos ( t 3 + e t | y 1 + y 2 | 8 , 719 π ( 1 + | y 1 + y 2 | ) ) + | z 1 + w 1 | 5 , 170 ( 9 + t ) 4 ( 1 + | z 1 + w 1 | ) ] [ 3 2 , | x 5 | 7 , 491 ( t + 25 ) 5 ( 1 + | x 5 | ) + t 2 + 5 2 ]

for all t[0,1] and x 1 , x 2 , x 3 , x 4 , x 5 , y 1 , y 1 , z 1 , w 1 R. It is clear that F has compact values and

d H ( F ( t , x 1 , x 2 , x 3 , x 4 , x 5 , y 1 , y 2 , z 1 , w 1 ) , F ( t , x 1 , x 2 , x 3 , x 4 , x 5 , y 1 , y 2 , z 1 , w 1 ) ) e t 9 , 600 ( 1 3 + e t ) ( | x 1 x 1 | + | x 2 x 2 | + | x 3 x 3 | + | x 4 x 4 | ) + 1 7 , 491 ( t + 25 ) 5 | x 5 x 5 | + e t 8 , 719 π ( | y 1 y 1 | + | y 2 y 2 | ) + 1 5 , 170 ( 9 + t ) 4 ( | z 1 z 1 | + | w 1 w 1 | )

for all t[0,1] and x 1 , x 2 , x 3 , x 4 , x 5 , x 1 , x 2 , x 3 , x 4 , x 5 , y 1 , y 2 , y 1 , y 2 , z 1 , z 1 , w 1 , w 1 R. Fix k 1 (t)= k 2 (t)= k 3 (t)= k 4 (t)= e t 9 , 600 ( 1 3 + e t ) , k 5 (t)= 1 7 , 491 ( t + 25 ) 5 , m 1 (t)= m 2 (t)= e t 8 , 719 π , m 1 (t)= m 1 (t)= 1 5 , 170 ( 9 + t ) 4 . As in the previous example, it is found that M 2 4.046590862 and

Θ = M 2 [ k 1 1 + k 2 1 + k 3 1 + k 4 1 + k 5 1 γ 0 ( n 11 + n 21 + n 31 + n 41 + n 51 1 Γ ( 2 δ 1 ) + n 61 1 Γ ( 3 β 1 ) + n 71 1 Γ ( 3 θ 1 ) ) + m 1 1 1 Γ ( 2 μ 1 ) + m 2 1 1 Γ ( 2 μ 2 ) + m 1 1 1 Γ ( 3 ν 1 ) + m 1 1 1 Γ ( 4 ξ 1 ) ] 1.922566928 × 10 3 < 1 .

As all the conditions of Theorem 4.7 are satisfied, the inclusion problem (5.2) has at least one solution.

References

  1. Podlubny I: Fractional Differential Equations. Academic Press, San Diego; 1999.

    Google Scholar 

  2. Kilbas AA, Srivastava HM, Trujillo JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam; 2006.

    Google Scholar 

  3. Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht; 2007.

  4. Baleanu D, Diethelm K, Scalas E, Trujillo JJ: Fractional Calculus Models and Numerical Methods. World Scientific, Boston; 2012.

    Google Scholar 

  5. Agarwal RP, Benchohra M, Hamani S: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 2010, 109: 973-1033. 10.1007/s10440-008-9356-6

    Article  MathSciNet  Google Scholar 

  6. Bhalekar S, Daftardar-Gejji V, Baleanu D, Magin R: Fractional Bloch equation with delay. Comput. Math. Appl. 2011, 61: 1355-1365. 10.1016/j.camwa.2010.12.079

    Article  MathSciNet  Google Scholar 

  7. Ahmad B, Nieto JJ: Sequential fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 2012, 64: 3046-3052. 10.1016/j.camwa.2012.02.036

    Article  MathSciNet  Google Scholar 

  8. Bai ZB, Sun W: Existence and multiplicity of positive solutions for singular fractional boundary value problems. Comput. Math. Appl. 2012, 63: 1369-1381. 10.1016/j.camwa.2011.12.078

    Article  MathSciNet  Google Scholar 

  9. Sakthivel R, Mahmudov NI, Nieto JJ: Controllability for a class of fractional-order neutral evolution control systems. Appl. Math. Comput. 2012, 218: 10334-10340. 10.1016/j.amc.2012.03.093

    Article  MathSciNet  Google Scholar 

  10. Agarwal RP, O’Regan D, Stanek S: Positive solutions for mixed problems of singular fractional differential equations. Math. Nachr. 2012, 285: 27-41. 10.1002/mana.201000043

    Article  MathSciNet  Google Scholar 

  11. Ahmad B, Ntouyas SK: Fractional differential inclusions with fractional separated boundary conditions. Fract. Calc. Appl. Anal. 2012, 15(3):362-382. 10.2478/s13540-012-0027-y

    MathSciNet  Google Scholar 

  12. Liu X, Liu Z: Existence results for fractional differential inclusions with multivalued term depending on lower-order derivative. Abstr. Appl. Anal. 2012., 2012:

    Google Scholar 

  13. Wang JR, Zhou Y, Medved M: Qualitative analysis for nonlinear fractional differential equations via topological degree method. Topol. Methods Nonlinear Anal. 2012, 40: 245-271.

    MathSciNet  Google Scholar 

  14. Cabada A, Wang G: Positive solutions of nonlinear fractional differential equations with integral boundary value conditions. J. Math. Anal. Appl. 2012, 389: 403-411. 10.1016/j.jmaa.2011.11.065

    Article  MathSciNet  Google Scholar 

  15. Ahmad B, Ntouyas SK, Alsaedi A: A study of nonlinear fractional differential equations of arbitrary order with Riemann-Liouville type multistrip boundary conditions. Math. Probl. Eng. 2013., 2013:

    Google Scholar 

  16. Cernea A: On a multi point boundary value problem for fractional order differential inclusion. Arab J. Math. Sci. 2013, 19(1):73-83. 10.1016/j.ajmsc.2012.07.001

    Article  MathSciNet  Google Scholar 

  17. Zhang L, Ahmad B, Wang G, Agarwal RP: Nonlinear fractional integro-differential equations on unbounded domains in a Banach space. J. Comput. Appl. Math. 2013, 249: 51-56. 10.1016/j.cam.2013.02.010

    Article  MathSciNet  Google Scholar 

  18. Baleanu D, Rezapour S, Mohammadi H: Some existence results on nonlinear fractional differential equations. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 2013., 371(1990): 10.1098/rsta.2012.0144

    Google Scholar 

  19. Baleanu D, Agarwal RP, Mohammadi H, Rezapour S: Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces. Bound. Value Probl. 2013., 2013: 10.1186/1687-2770-2013-112

    Google Scholar 

  20. Zhou WX, Chu YD, Baleanu D: Uniqueness and existence of positive solutions for a multi-point boundary value problem of singular fractional differential equations. Adv. Differ. Equ. 2013., 2013: 10.1186/1687-1847-2013-114

    Google Scholar 

  21. Ahmad B, Ntouyas SK: Existence results for higher order fractional differential inclusions with multi-strip fractional integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2013., 2013: 10.1186/1687-1847-2013-20

    Google Scholar 

  22. Baleanu D, Nazemi SZ, Rezapour S: Existence and uniqueness of solutions for multi-term nonlinear fractional integro-differential equations. Adv. Differ. Equ. 2013., 2013: 10.1186/1687-1847-2013-368

    Google Scholar 

  23. Nieto JJ, Ouahab A, Prakash P: Extremal solutions and relaxation problems for fractional differential inclusions. Abstr. Appl. Anal. 2013., 2013: 10.1155/2013/292643

    Google Scholar 

  24. Zhai C, Hao M: Mixed monotone operator methods for the existence and uniqueness of positive solutions to Riemann-Liouville fractional differential equation boundary value problems. Bound. Value Probl. 2013., 2013: 10.1186/1687-2770-2013-85

    Google Scholar 

  25. Graef JR, Kong L, Wang M: Existence and uniqueness of solutions for a fractional boundary value problem on a graph. Fract. Calc. Appl. Anal. 2014, 17: 499-510. 10.2478/s13540-014-0182-4

    Article  MathSciNet  Google Scholar 

  26. Baleanu D, Nazemi SZ, Rezapour S: Attractivity for a k -dimensional system of fractional functional differential equations and global attractivity for a k -dimensional system of nonlinear fractional differential equations. J. Inequal. Appl. 2014., 2014: 10.1186/1029-242X-2014-31

    Google Scholar 

  27. Baleanu D, Nazemi SZ, Rezapour S: The existence of solution for a k -dimensional system of multiterm fractional integrodifferential equations with antiperiodic boundary value problems. Abstr. Appl. Anal. 2014., 2014:

    Google Scholar 

  28. Punzo F, Terrone G: On the Cauchy problem for a general fractional porous medium equation with variable density. Nonlinear Anal. 2014, 98: 27-47. 10.1016/j.na.2013.12.007

    Article  MathSciNet  Google Scholar 

  29. Liu X, Liu Z, Fu X: Relaxation in nonconvex optimal control problems described by fractional differential equations. J. Math. Anal. Appl. 2014, 409: 446-458. 10.1016/j.jmaa.2013.07.032

    Article  MathSciNet  Google Scholar 

  30. Ahmad B:Existence of solutions for fractional differential equations of order q(2,3] with anti-periodic boundary conditions. J. Appl. Math. Comput. 2010, 34: 385-391. 10.1007/s12190-009-0328-4

    Article  MathSciNet  Google Scholar 

  31. Wang F, Liu Z: Anti-periodic fractional boundary value problems for nonlinear differential equations of fractional order. Adv. Differ. Equ. 2012., 2012: 10.1186/1687-1847-2012-116

    Google Scholar 

  32. Alsaedi A, Ahmad B, Assolami A: On antiperiodic boundary value problems for higher-order fractional differential equations. Abstr. Appl. Anal. 2012., 2012:

    Google Scholar 

  33. Wang X, Guo X, Tang G: Anti-periodic fractional boundary value problems for nonlinear differential equations of fractional order. J. Appl. Math. Comput. 2013, 41: 367-375. 10.1007/s12190-012-0613-5

    Article  MathSciNet  Google Scholar 

  34. Ahmad B, Nieto JJ, Alsaedi A, Mohamad N: On a new class of antiperiodic fractional boundary value problems. Abstr. Appl. Anal. 2013., 2013:

    Google Scholar 

  35. Deimling K: Multivalued Differential Equations. de Gruyter, Berlin; 1992.

    Book  Google Scholar 

  36. Hu S, Papageorgiou NS: Handbook of Multivalued Analysis. Kluwer Academic, Dordrecht; 1997.

    Book  Google Scholar 

  37. Kisielewicz M: Differential Inclusions and Optimal Control. Kluwer Academic, Dordrecht; 1991.

    Google Scholar 

  38. Aubin JP, Cellina A: Differential Inclusions. Springer, Berlin; 1984.

    Book  Google Scholar 

  39. Aubin JP, Frankowska H: Set-Valued Analysis. Birkhäuser, Boston; 1990.

    Google Scholar 

  40. Smart DR: Fixed Point Theorems. Cambridge University Press, Cambridge; 1980.

    Google Scholar 

  41. Lasota A, Opial Z: An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 1965, 13: 781-786.

    MathSciNet  Google Scholar 

  42. Bressan A, Colombo G: Extensions and selections of maps with decomposable values. Stud. Math. 1988, 90: 69-86.

    MathSciNet  Google Scholar 

  43. Granas A, Dugundji J: Fixed Point Theory. Springer, Berlin; 2005.

    Google Scholar 

  44. Covitz H, Nadler SB: Multi-valued contraction mappings in generalized metric spaces. Isr. J. Math. 1970, 8: 5-11. 10.1007/BF02771543

    Article  MathSciNet  Google Scholar 

  45. Kamenskii M, Obukhovskii V, Zecca P: Condensing Multi-Valued Maps and Semilinear Differential Inclusions in Banach Spaces. de Gruyter, Berlin; 2001.

    Book  Google Scholar 

  46. Tolstonogov AA: Bogolyubov’s theorem under constraints generated by a controlled second-order evolution system. Izv. Ross. Akad. Nauk, Ser. Mat. 2003, 67(5):177-206. 10.4213/im456

    Article  MathSciNet  Google Scholar 

  47. Castaing C, Valadier M: Convex Analysis and Measurable Multifunctions. Springer, Berlin; 1977.

    Book  Google Scholar 

Download references

Acknowledgements

This paper was funded by Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia. The authors, therefore, acknowledge technical and financial support of KAU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bashir Ahmad.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, B., Alsaedi, A., Nazemi, S.Z. et al. Some existence theorems for fractional integro-differential equations and inclusions with initial and non-separated boundary conditions. Bound Value Probl 2014, 249 (2014). https://doi.org/10.1186/s13661-014-0249-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-014-0249-5

Keywords