Abstract
We study an inverse problem on the halflinear Dirichlet eigenvalue problem , where with and r is a positive function defined on . Using eigenvalues and nodal data (the lengths of two consecutive zeros of solutions), we reconstruct and its derivatives. Our method is based on (Law and Yang in Inverse Probl. 14:299312, 779780, 1998; Shen and Tsai in Inverse Probl. 11:11131123, 1995), and our result extends the result in (Shen and Tsai in Inverse Probl. 11:11131123, 1995) for the linear case to the halflinear case.
MSC: 34A55, 34B24, 47A75.
1 Introduction
The subject under investigation is the halflinear eigenvalue problem consisting of
where with , and r is a positive function defined on . By [14], it is well known that the problem (1) has countably many eigenpairs , and the eigenfunction has exactly nodal points in (0,1), say . In this paper, we intend to give the representation of the function and its derivatives in (1) by using eigenvalues and nodal points. This formation is treated as the reconstruction formula. Such a problem is called an inverse nodal problem and has attracted researchers’ attention. Readers can refer to [57] for the linear case (), and to [8,9] for the general case ().
In [8,9], inverse nodal problems on
are considered. The authors in [8] studied (2) with Dirichlet boundary conditions
while the authors in [9] studied (2) with eigenparameter dependent boundary conditions
Both of them first used the modified Prüfer substitution to derive the asymptotic expansion of eigenvalues and nodal points and then gave the reconstruction formula of by using the nodal data. Note that the authors did not deal with the derivatives of in [8,9]. Besides, the author in [10] considered the same issue for the pLaplacian energydependent SturmLiouville problem,
coupling with the Dirichlet boundary conditions.
In [6], Shen and Tsai studied the inverse nodal problem on the string equation with Dirichlet boundary conditions. They employed the standard difference operator △ to give a reconstruction formulas for and its derivatives. On the other hand, Law and Yang [7] not only studied the inverse nodal problems for the linear problem
with separated boundary conditions
where , and gave a reconstruction formulas for and its derivatives, but they also mentioned that the formulas for and its derivatives in the string equation with (3) are still valid. They applied the difference quotient operator δ in the formulas.
The main aim and methods of this study are basically the same as the ones in [6,7]. Here we employ a modified Prüfer substitution on (1) derived by the generalized sine function . The wellknown properties of can be referred to [1,2,4], etc. It shall be mentioned that is not at odd multiples of as , and not at even multiples of as . These lead to that the reconstruction formulas for Nth derivatives, , in [6,7] cannot be extended to the halflinear case () in this article.
Denote by the first zero of in the positive axis. Define , , and the nodal length for . The following is our first result.
Theorem 1Consider (1) and supposeris continuous on. For each, letfor the sake of simplicity. Then the following asymptotic formula is valid:
Moreover, if, the error term can be replaced by.
Now, define the difference operator △ and the difference quotient operator δ as follows:
This δoperator discretizes the differential operator in a nice way. It resembles the difference quotient operator in finite difference. For the derivatives of , we have the following result.
Theorem 2Consider (1) and supposerison. For each, letfor the sake of simplicity. Then as,
This paper is organized as follows. In Section 2, we give the asymptotic estimates for eigenvalues. This step makes us know such quantities well. It is necessary to specify the orders of the expansion terms in the proofs of the main results. In Section 3, the proofs of the main theorems are given.
2 Asymptotic estimates for eigenvalues
Before we prove the main results, we derive the eigenvalue expansion. Note that if , the last term in (6) can be replaced by (cf. [[2], p.171]). In [[3], Theorem 2.5], they proved the error term is if . The smoothness of increases, and the smaller error can be derived.
Theorem 3Suppose thatis a positivefunction defined on. Then the asymptotic estimate yields
Proof Let be a solution of (1) and define a Prüfertype substitution
Then a direct calculation yields
With each eigenvalue of (1), one can associate a Prüfer angle via (7) if one also specifies the initial condition for . In particular, . Integrating both sides of (8) over , one obtains
Let . Note that if is valid in some subinterval of , the term will be constant in this subinterval. This implies that the function depends on in this subinterval from (8). This will contradict our original problem. Hence, the points satisfying shall be isolated. Then, in (8)
for . Let . Then . Dropping the function variable t, one has the following:
Define . Then since is a periodic function. Moreover, by integration by parts, (11) implies that
for sufficiently large n. Substituting (11)(12) into (10), the eigenvalue estimates (6) can be derived. □
3 Proofs of Theorems 12
Proof of Theorem 1 Let . By the Sturm comparison theorem for the pLaplacian (cf.[4,11,12]etc.), one has
where and are the maximal and minimal values of r on , respectively. Then
Moreover, by the continuity of and (13), there is an such that
On the other hand, by the mean value theorem and (14), one also has
for some between x and . Therefore, (15) and (16) complete the proof. □
Before we prove Theorem 2, one has to derive the asymptotic behavior of at the nodal points. Note that the series in (11) is uniformly convergent on . Set . Integrating (8) over and applying (11), one has
By the Taylor expansion theorem and integration by parts, we find
Hence,
For convenience, we denote
where
Remark 1 Note that the function is defined by the integral of . By the unlike property of , is not a smooth function. This is the main reason that the result in [[7], Theorem 5.1] does not hold in our case, .
Then the following lemmas are necessary to the proof of Theorem 2 and the superscript will be dropped for the sake of convenience, and .
Lemma 1Let. Thenasandas. Moreover, ifis replaced by, the above result is still valid. Furthermore, as.
Proof The first part of the proof is followed by the mean value theorem and the asymptotic estimates for nodal length (14), i.e.,
It is also valid for by similar arguments. On the other hand, for , we find
and it is also valid for . Finally, by (15) and (16), we find and
□
Proof First applying the identity , (14) and Lemma 1, one can obtain
The second part is similar to the one of the first part. So it is omitted here. □
The following corollary is similar to [[7], Lemma 2.3]. We give the proof for the convenience of the readers.
Corollary 1Let. Define. Then, for,
Proof By the mean value theorem for integrals, for every j there exists some such that . Then applying Lemmas 12, we complete the proof. □
Proof of Theorem 2 Recall (19). By Theorem 3 and Lemma 2, one has and for . By Theorem 3 and Corollary 1, one can obtain for . By Theorem 3, Lemma 1 and the definition of , one has and are for . Hence, one can find
for . To complete the proof, it suffices to show that
for sufficiently large n. Obviously, (21) holds for by (14) and (16). When , by the Taylor theorem,
for ; i.e., by the mean value theorem and (22),
Successively, we have
Therefore, substituting (20) into (23)(24), this completes the proof. □
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
The author WCW was a major contributor in writing the manuscript. The author YHC performed the literature review. Both of them performed the final editing of the manuscript. They also gave their final approval of the version to be submitted and any revised version.
Acknowledgements
The authors express their thanks to the referees for helpful comments. The first author is supported in part by the National Science Council, Taiwan under contract number NSC 1022115M507001. The author YH Cheng is supported by the National Science Council, Taiwan under contract numbers NSC 1022115M152 002.
References

Binding, P, Drabek, P: SturmLiouville theory for the pLaplacian. Studia Sci. Math. Hung.. 40, 373–396 (2003)

Elbert, Á: A halflinear second order differential equation. (1979)

Eberhart, W, Elbert, A: On the eigenvalues of a halflinear boundary value problem. Math. Nachr.. 213, 57–76 (2000). Publisher Full Text

Reichel, W, Walter, W: SturmLiouville type problems for the pLaplacian under asymptotic nonresonance conditions. J. Differ. Equ.. 156, 50–70 (1999). Publisher Full Text

McLaughlin, JR: Inverse spectral theory using nodal points as data  a uniqueness result. J. Differ. Equ.. 73, 354–362 (1988). Publisher Full Text

Shen, CL, Tsai, TM: On a uniform approximation of the density function of a string equation using eigenvalues and nodal points and some related inverse nodal problems. Inverse Probl.. 11, 1113–1123 (1995). Publisher Full Text

Law, CK, Yang, CF: Reconstructing the potential function and its derivatives using nodal data. Inverse Probl.. 14, 299–312 Addendum 14, 779780 (1998) (1998)
Addendum 14, 779780 (1998)
Publisher Full Text 
Law, CK, Lian, WC, Wang, WC: Inverse nodal problem and Ambarzumyan problem for the pLaplacian. Proc. R. Soc. Edinb. A. 139, 1261–1273 (2009). Publisher Full Text

Wang, WC, Cheng, YH, Lian, WC: Inverse nodal problems for the pLaplacian with eigenparameter dependent boundary conditions. Math. Comput. Model.. 54, 2718–2724 (2011). Publisher Full Text

Koyunbakan, H: Inverse nodal problem for pLaplacian energydependent SturmLiouville equation. Bound. Value Probl.. 2013, Article ID 272 (2013)

Li, HJ, Yeh, CC: Sturmian comparison theorem for halflinear secondorder differential equations. Proc. R. Soc. Edinb. A. 125, 1193–1204 (1995). Publisher Full Text

Walter, W: SturmLiouville theory for the radial operator. Math. Z.. 227, 175–185 (1998). Publisher Full Text