# Boundary fractional differential equation in a complex domain

Rabha W Ibrahim1* and Jay M Jahangiri2

Author Affiliations

1 Institute of Mathematical Sciences, University Malaya, Kuala Lumpur, 50603, Malaysia

2 Institute of Mathematical Sciences, Kent State University, Burton, OH, 44021-9500, USA

For all author emails, please log on.

Boundary Value Problems 2014, 2014:66  doi:10.1186/1687-2770-2014-66

 Received: 2 December 2013 Accepted: 11 March 2014 Published: 24 March 2014

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

### Abstract

We discuss univalent solutions of boundary fractional differential equations in a complex domain. The fractional operators are taken in the sense of the Srivastava-Owa calculus in the unit disk. The existence of subsolutions and supersolutions (maximal and minimal) is established. The existence of a unique univalent solution is imposed. Applications are constructed by making use of a transformation formula for fractional derivatives as well as generalized fractional derivatives.

### 1 Introduction

Fractional calculus is the most significant branch of mathematical analysis that transacts with the potential of covering real number powers or complex number powers of the differentiation operator . This concept was harnessed in geometric function theory (GFT). It was applied to derive different types of differential and integral operators mapping the class of univalent functions and its subclasses into themselves. Hohlov [1,2] imposed sufficient conditions that guaranteed such mappings for the operators defined by means of the Hadamard product (or convolution) with Gauss hypergeometric functions. This was further extended by Kiryakova and Saigo [3] and Kiryakova [4,5] to the operators of the generalized fractional calculus (GFC) consisting of product functions of the Gaussian function, generalized hypergeometric functions, G-functions, Wright functions and Fox-Wright generalized functions as well as rendering integral representations by means of Fox H-functions and the Meijer G-function. These techniques can be used to display sufficient conditions that guarantee mapping of univalent functions (or, respectively, of convex functions) into univalent functions. For example, for the case of Dziok-Srivastava operator see [6], and for an extension to the Wright functions see [7] which is concerned with the Srivastava-Wright operator. With the help of operators introduced in [6] and [7] one can establish univalence criteria for a large number of operators in GFT and GFC and for many of their special cases such as operators of the classical fractional calculus. Srivastava and Owa [8] generalized the definitions of fractional operators as follows.

Definition 1.1 For the function analytic in a simply-connected region of the complex z-plane ℂ containing the origin and for , the fractional derivative of order α is defined by

where the multiplicity of is removed by requiring to be real when . Moreover, when , we have .

Definition 1.2 For the function analytic in a simply-connected region of the complex z-plane ℂ containing the origin and for , the fractional integral of order α is defined by

where the multiplicity of is removed by requiring to be real when .

Remark 1.1 From the above two definitions, we observe that

and

Later, the first author [9] modified these Srivastava-Owa operators into two fractional parameters. For a wealth of references on applications of Srivastava-Owa operators, see [10-19].

In this paper, we study univalent solutions of boundary fractional differential equations in a complex domain. The fractional operators are considered in the sense of the Srivastava-Owa [8] differential operator

(1)

where is the open unit disk and f is analytic in U satisfying the Riemann mapping conditions. The existence of subsolutions and supersolutions (minimal and maximal) is established. The existence of a unique univalent solution is introduced. Applications are also constructed by making use of some transformation formula for fractional derivatives. Equation (1) is a generalization of Beurling problem.

### 2 Preliminaries

Let be the set of analytic functions f on the unit disk U normalized by and . And let be the subset of normalized by and . We denote by the set of all univalent functions .

Definition 2.1 Let be a positive, continuous and bounded function and the set

Then every function is a subsolution for Ψ. If f is univalent, then it is called a univalent subsolution for Ψ.

Definition 2.2 Let be a positive, continuous and bounded function and the set

Then every function is a supersolution for Ψ. If f is univalent, then it is called a univalent supersolution for Ψ.

In this work, we utilize the generalized sets

and

When and , the above sets reduce to [20]. The next result shows some properties of . This is ultimately Lemma 2.3 from [20], therefore we omit the proof.

Lemma 2.1Let Ψ be a positive, continuous and bounded function on ℂ.

1. Any subsolution for Ψ has a (Lipschitz) continuous extension to the closed unit disk. The setis uniformly bounded onand equicontinuous on.

2. A functionwith a continuous extension toUis a subsolution for Ψ if and only if

whereis the Poisson kernel.

3. If a sequence of subsolutions fromconverges locally uniformly inUto a function (algebra of a holomorphic function that satisfies, ), then.

4. Letand letbe a positive, continuous and bounded function with. Then, for allsufficiently close to 1, the function, , is a subsolution for.

Lemma 2.2 [[20], Lemma 2.7, Lemma 3.7]

Let Ψ be a positive, continuous and bounded function on ℂ. Assume that, are two subsolutions for Ψ (univalent supersolutions for Ψ). Then the upper ofandis also a subsolution for Ψ (a univalent supersolution for Ψ).

Lemma 2.3Ifis a solution to problem (1), thenfhas 0 as its unique critical point.

Lemma 2.3 is a generalization of the result found in [21]. Thence, we cancel the proof.

Next result shows some properties of the set , which basically is a generalization of [[20], Lemma 3.3]. So we skip the proof.

Lemma 2.4Let Ψ be a positive, continuous and bounded function on ℂ.

1. Any univalent supersolutiongfor Ψ satisfies.

2. A bounded univalent functionbelongs toif and only if

whereis the Poisson kernel.

3. If a uniformly bounded sequence of univalent supersolutions for Ψ converges locally uniformly inU, then the limit functionfis again a univalent supersolution for Ψ.

4. Letbe a positive, continuous and bounded function with, and letgbe a univalent supersolution for Ψ. Ifgis bounded, then, for allsufficiently close to 1, the function, , is a univalent supersolution for Φ.

### 3 Main results

Our aim is to establish the largest univalent solution and the smallest univalent solution . We are able to state and prove the following theorem.

Theorem 3.1Let Ψ be a positive continuous function on ℂ. Then there exists a unique univalent function (algebra unit disk), , such thatand. Furthermore, the maximal subsolutionis a solution.

Proof By Lemma 2.1, is non-empty and bounded in (). Assume that such that

Assuming that is the upper of f and and that . In view of Lemma 2.2, , we get . On the other hand, we have

which involves . Set . Then h is a well-defined holomorphic function on U such that . By letting

and for sufficiently small values of α, we have

Letting the function be defined by

we conclude that

and

Hence

Therefore, by virtue of the principle of subordination, this yields

and for all ,

This implies that with .

Now we proceed to show that the maximal subsolution is a solution in . Define a function

where φ is the harmonic function on whose boundary values are logΨ (see [[22], p.402]). From the definition of Φ, we may conclude that is the maximal subsolution of Φ. Let be a solution for (1) having a unique critical point at 0 (Lemma 2.3). Obviously, and the two functions and are continuous on , harmonic on U and coincide on ∂U. Thus

on U and

Consequently,

is identically equal to zero. Hence is a solution. This completes the proof. □

Remark 3.1 Note that Theorem 3.1 can be introduced for the boundary problem

where f is analytic in U satisfying the Riemann mapping conditions.

As a consequence of our theorem, we have the following.

Corollary 3.1Let Ψ be a positive continuous function on ℂ. Then there exists a univalent functionsatisfyingandsuch thatis a solution to (1).

Corollary 3.2LetDbe a simply-connected region inandbe an analytic function on the open unit disk. If Ψ is a positive convex function, then there exists a unique univalent functionsatisfyingandsuch thatis a solution to (1).

Corollary 3.3Let Ψ be a positive continuous sublinear function on ℂ; i.e.,

Then there exists a univalent functionsatisfyingandsuch thatis a solution to (1).

Next, we discuss the boundary problem for some functions , where . From [[23], Theorem 1.3], for , we define the fractional transform

Now, in a manner similar to Theorem 3.1, we have the following theorem.

Theorem 3.2Consider the problem

(2)

where , andis analytic in a simply-connected region. Ifand Ψ is a continuous function on ℂ, then there exists a unique univalent function, , such that, where

and.

Proof Set . It is clear that and . Also is non-empty and bounded in because . Let such that

where is as in Theorem 3.1. Next, assume that is the upper of P and and that , where . Thus . On the other hand, we may have

which includes . Now the proof is complete by proceeding with a similar manner to that of the first part of the proof of Theorem 3.1. □

As a consequence of Theorem 3.2 above, we have the following.

Corollary 3.4Let Ψ be a positive continuous function on ℂ. Then there exists a univalent functionsatisfyingand, wheresolves problem (2).

Tremblay [24] studied a fractional calculus operator defined in terms of the Riemann-Liouville fractional differential operator. We extend this operator in the complex plane to involve as follows:

where

Consequently, for the class consisting of analytic functions that are univalent in U, we have the following upper bound of the operator .

Theorem 3.3Let. If, then

(3)

whereFis the hypergeometric function. The equality holds true for the Koebe function

Proof By De Branges’ theorem [25] (also known as Bieberbach conjecture, e.g., see Duren [26]), for , we have . Therefore

where is the Pochhammer symbol defined by

Finally, by letting the Koebe function for in (3), we can show that the result is sharp. Hence the proof. □

Moreover, we can prove the following theorem.

Theorem 3.4Let. If, and, then we have the sharp bound

(4)

whereFis a hypergeometric function.

Proof Let and . Then we may use , . If , then we put . Otherwise, we let . From the above two cases, we conclude that , . Therefore

Now, by applying the last assertion on , we conclude

□

We obtain the following two corollaries by making use the above operator and, respectively, letting and .

Corollary 3.5Consider the problem

(5)

whereis analytic in a simply-connected region. If, and Ψ is a continuous function on ℂ, then there exists a unique univalent function, , such that, , , where

and.

Corollary 3.6Consider the problem

(6)

whereis analytic in a simply-connected region. Ifand Ψ is a continuous function on ℂ, then there exists a unique univalent function, , such that, , , where

and.

In the following example we demonstrate that, in view of Theorem 3.1, the above boundary problems have univalent solutions in the unit disk with .

Example 3.1 A computation implies

and for

we get

Thus, we have the boundary problems

and

It is clear that , as well as , which satisfies , .

By using the same technique as in the first part of Theorem 3.1, together with Lemma 2.2 and Lemma 2.4, we conclude the following.

Theorem 3.5Let Ψ be a positive, continuous and bounded function. Then there exists a unique functionsuch that

Then the functionmapsUconformally onto, where

We call the function of Theorem 3.5 the minimal univalent supersolution for Ψ.

### Competing interests

The authors declare that they have no competing interests.

### Authors’ contributions

Both authors jointly worked on deriving the results and approved the final manuscript.

### Acknowledgements

This work is supported by University of Malaya High Impact Research Grant no vote UM.C/625/HIR/MOHE/SC/13/2 from the Ministry of Higher Education Malaysia. The authors also would like to thank the referees for giving some suggestions for improving the work.

### References

1. Hohlov, Y: Convolutional operators preserving univalent functions. Ukr. Math. J.. 37, 220–226 (1985)

2. Hohlov, Y: Convolutional operators preserving univalent functions. Pliska Stud. Math. Bulgar.. 10, 87–92 (1989)

3. Kiryakova, V, Saigo, M: Criteria for generalized fractional integrals to preserve univalency of analytic functions. C. R. Acad. Bulgare Sci.. 58, 1127–1134 (2005)

4. Kiryakova, V: Criteria for univalence of the Dziok-Srivastava and the Srivastava-Wright operators in the class A. Appl. Math. Comput.. 218, 883–892 (2011). Publisher Full Text

5. Kiryakova, V: Generalized Fractional Calculus and Applications, Longman, Harlow (1994)

6. Dziok, J, Srivastava, HM: Classes of analytic functions associated with the generalized hypergeometric function. Appl. Math. Comput.. 103, 1–13 (1999)

7. Srivastava, HM: Some Fox-Wright generalized hypergeometric functions and associated families of convolution operators. Appl. Anal. Discrete Math.. 1, 56–71 (2007). Publisher Full Text

8. Srivastava, HM, Owa, S: Univalent Functions, Fractional Calculus, and Their Applications, Halsted, New York (1989)

9. Ibrahim, RW: On generalized Srivastava-Owa fractional operators in the unit disk. Adv. Differ. Equ.. 2011, (2011) Article ID 55

10. Ibrahim, RW: On generalized Hyers-Ulam stability of admissible functions. Abstr. Appl. Anal.. 2012, (2012) Article ID 749084

11. Ibrahim, RW: Fractional complex transforms for fractional differential equations. Adv. Differ. Equ.. 2012, (2012) Article ID 98

12. Ibrahim, RW: On holomorphic solution for space- and time-fractional telegraph equations in complex domain. J. Funct. Spaces Appl.. 2012, (2012) Article ID 703681

13. Srivastava, HM, Darus, M, Ibrahim, RW: Classes of analytic functions with fractional powers defined by means of a certain linear operator. Integral Transforms Spec. Funct.. 22, 17–28 (2011). Publisher Full Text

14. Ibrahim, RW, Jalab, HA: Time-space fractional heat equation in the unit disk. Abstr. Appl. Anal.. 2013, (2013) Article ID 364042

15. Sokół, J, Piejko, K: On the Dziok-Srivastava operator under multivalent analytic functions. Appl. Math. Comput.. 177, 839–843 (2006). Publisher Full Text

16. Piejko, K, Sokół, J: Subclasses of meromorphic functions associated with the Cho-Kwon-Srivastava operator. J. Math. Anal. Appl.. 337, 1261–1266 (2008). Publisher Full Text

17. Sokół, J: On some applications of the Dziok-Srivastava operator. Appl. Math. Comput.. 201, 774–780 (2008). Publisher Full Text

18. Sivasubramanian, S, Sokół, J: Hypergeometric transforms in certain classes of analytic functions. Math. Comput. Model.. 54, 3076–3082 (2011). Publisher Full Text

19. Hussain, S, Sokół, J: On a class of analytic functions related to conic domains and associated with Carlson-Shaffer operator. Acta Math. Sci. Ser. B. 32, 1399–1407 (2012). Publisher Full Text

20. Černe, M, Zajec, M: Boundary differential relations for holomorphic functions on the disc. Proc. Am. Math. Soc.. 139, 473–484 (2011). Publisher Full Text

21. Gamelin, TW: Complex Analysis, Springer, New York (2001)

22. Gaboury, S, Tremblay, R: A note on some new series of special functions. Integral Transforms Spec. Funct. (2013). Publisher Full Text

23. Tremblay, R: Une contribution a la theorie de la derivee fractionnaire. PhD thesis, Laval University, Quebec, Canada (1974)

24. De Branges, L: A proof of the Bieberbach conjecture. Acta Math.. 145, 137–152 (1985)

25. Duren, PL: Univalent Functions, Springer, New York (1983)