Abstract
We study the higherorder boundary value problems. The existence of symmetric positive solutions of the problem is discussed. Our results extend some recent work in the literature. The analysis of this paper mainly relies on the monotone iterative technique.
MSC: 34B15, 34B18.
Keywords:
higherorder boundary value problems; symmetric positive solutions; existence; monotone iterative technique1 Introduction
We study the boundary value problem (BVP)
where is an integer, is continuous, , are nonnegative constants, , . may be singular at , (and/or ). If a function is continuous and satisfies for , then we say that is symmetric on . By a symmetric positive solution of BVP (1.1) we mean a symmetric function such that for and satisfies (1.1).
In recent years, many authors have studied BVP (1.1), they only considered that f is nondecreasing or nonincreasing in u, or the boundary condition depends only on derivatives of even orders; see [18] and references cited therein. To the best of the author’s knowledge, there is no such results involving (1.1). In this note, we intend to fill in such gaps in the literature.
The organization of this paper is as follows. After this introduction, in Section 2, we state the assumptions and some preliminary lemmas. By applying the monotone iterative technique, we discuss the existence of symmetric positive solutions for (1.1) and obtain the main results in Section 3.
2 Preliminaries
For convenience, in this paper we let , ,
Remark 2.1 The set P is not a cone as it is not closed.
Throughout this paper, we assume the following:
(H1) , are nonnegative constants, , . is continuous and symmetric in t, i.e., f satisfies
(H2) For , is nondecreasing in u and there exists a constant such that if , then
(H2′) For , is nonincreasing in u and there exists a constant such that if , then
Example 2.1 Consider the equation
It is easy to see that the function f satisfies assumptions (H1) and (H2). In fact, if , there exists constant λ with such that .
Remark 2.2 It is easy to see that (H2) implies that if , then
and (H2′) implies that if , then
Now, we present several lemmas that will be used in the proof of our results. By routine calculations we have the following results.
Lemma 2.1Letvbe integrable on, then the BVP
has a unique solution
3 Main results
where are defined by (2.1). It is clear that u is a solution of (1.1) if and only if u is a fixed point of T.
Theorem 3.1Assume (H1)(H3) hold. Then BVP (1.1) has at least one symmetric positive solution.
Proof
Claim 3.1is completely continuous and nondecreasing.
In fact, for , it is obvious that , for and . (2.3), (2.9) and a change of variables imply
For any , from (2.4), (2.6), (2.8), and (H3), we have
Thus, it follows from (3.3) and (3.4) that , and so . Next by a standard method and the AscoliArzela theorem one can prove that is completely continuous, we omit it here. From (H2), it is easy to see that T is nondecreasing in u. Hence, Claim 3.1 holds.
Claim 3.2Letbe fixed number satisfying
whereλis defined in (H2) in which, and assume
Then
In fact, since . So, from (3.5) and noting that , . From (3.6), we have and .
On the other hand, from (2.4) and (2.6), we have
Since and T is nondecreasing, by induction, (3.8) holds.
that, for any natural number n,
Thus, for all natural numbers n and p, we have
which implies that there exists such that (3.9) holds, and Claim 3.2 holds.
Letting in (3.7), we obtain , which is a symmetric positive solution of BVP (1.1), and this completes the proof of the theorem. □
Theorem 3.2Assume (H1), (H2′) and (H3) hold. Then BVP (1.1) has at least one symmetric positive solution.
Proof
Claim 3.3is completely continuous and nonincreasing.
The proof of Claim 3.3 is similar to the proof of Claim 3.1, so this is omitted.
Claim 3.4Letbe fixed number, be sufficiently large constant satisfying
whereλis defined in (H2′) in which, and assume
Then
In fact, since and . So from (3.11),
From (2.5), (3.10), (3.14), and noting that T is nonincreasing in u, we have
Therefore,
From (3.15), (3.17), (3.18), and noting that is nondecreasing, by induction, (3.12) holds.
On the other hand, from (2.5) and (2.7), for ,
Then from (3.16) and (3.19), we have
and thus
Therefore, for all natural numbers n and p, we have
From (3.20) and (3.21), there exists such that (3.13) holds, and Claim 3.4 holds.
Letting in (3.11), we obtain , which is a symmetric positive solution of BVP (1.1), and this completes the proof of the theorem. □
Remark 3.1[3,5] only considered that f is nondecreasing or nonincreasing in u, and , in (1.1), so our results extend the work in the literature.
Example 3.1 Consider the BVP
It is easy to see that function satisfies (H1) and (H3). If , there exists constant λ with such that , so (H2) is also satisfied. Therefore, from Theorem 3.1, (3.22) has at least one symmetric positive solution.
Competing interests
The author declares that she has no competing interests.
Acknowledgements
Research supported by the Scientific Research Fund of Hunan Provincial Education Department (13C319).
References

Dalmasso, R: An existence an uniqueness theorem for a second order nonlinear system. J. Math. Anal. Appl.. 327, 715–722 (2007). Publisher Full Text

Ma, HL: Symmetric positive solutions for nonlocal boundary value problems of fourth order. Nonlinear Anal.. 68, 645–651 (2008). Publisher Full Text

Luo, Y, Luo, ZG: A necessary and sufficient condition for the existence of symmetric positive solutions of higherorder boundary value problems. Appl. Math. Lett.. 25, 862–868 (2012). Publisher Full Text

Liang, SH, Zhang, JH: Positive solutions of 2nthorder ordinary differential equations with multipoint boundary conditions. Appl. Math. Comput.. 197, 262–270 (2008). Publisher Full Text

Lin, XL, Zhao, Z: Existence and uniqueness of symmetric positive solutions of 2nthorder nonlinear singular boundary value problems. Appl. Math. Lett.. 26, 692–698 (2013). Publisher Full Text

Trif, T: Unique solvability of certain nonlinear boundary value problems via a global inversion theorem of HadamardLévy type. Demonstr. Math.. 38, 331–340 (2005)

Yang, B: Upper and lower estimates for positive solutions of the higher order Lidstone boundary value problems. J. Math. Anal. Appl.. 382, 290–302 (2011). Publisher Full Text

Yuan, CJ, Wen, XD, Jiang, DQ: Existence and uniqueness of positive solution for nonlinear singular 2mthorder continuous and discrete Lidstone boundary value problems. Acta Math. Sin.. 31B, 281–291 (2011)