SpringerOpen Newsletter

Receive periodic news and updates relating to SpringerOpen.

Open Access Open Badges Research

Positive solutions for elastic beam equations with nonlinear boundary conditions and a parameter

Wenxia Wang*, Yanping Zheng, Hui Yang and Junxia Wang

Author Affiliations

Department of Mathematics, Taiyuan Normal University, Taiyuan, 030012, P.R. China

For all author emails, please log on.

Boundary Value Problems 2014, 2014:80  doi:10.1186/1687-2770-2014-80

Published: 9 April 2014


This paper is concerned with the existence, nonexistence, and uniqueness of convex monotone positive solutions of elastic beam equations with a parameter λ. The boundary conditions mean that the beam is fixed at one end and attached to a bearing device or freed at the other end. By using fixed point theorem of cone expansion, we show that there exists <a onClick="popup('http://www.boundaryvalueproblems.com/content/2014/1/80/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2014/1/80/mathml/M1">View MathML</a> such that the beam equation has at least two, one, and no positive solutions for <a onClick="popup('http://www.boundaryvalueproblems.com/content/2014/1/80/mathml/M2','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2014/1/80/mathml/M2">View MathML</a>, <a onClick="popup('http://www.boundaryvalueproblems.com/content/2014/1/80/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2014/1/80/mathml/M3">View MathML</a> and <a onClick="popup('http://www.boundaryvalueproblems.com/content/2014/1/80/mathml/M4','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2014/1/80/mathml/M4">View MathML</a>, respectively; furthermore, by using cone theory we establish some uniqueness criteria for positive solutions for the beam and show that such solution <a onClick="popup('http://www.boundaryvalueproblems.com/content/2014/1/80/mathml/M5','MathML',630,470);return false;" target="_blank" href="http://www.boundaryvalueproblems.com/content/2014/1/80/mathml/M5">View MathML</a> depends continuously on the parameter λ. In particular, we give an estimate for critical value of parameter λ.

MSC: 34B18, 34B15.

elastic beam equation; positive solution; fixed point; cone