Abstract
This paper deals with the Cauchy problem for a generalized CamassaHolm equation with highorder nonlinearities,
where and . This equation is a generalization of the famous equation of CamassaHolm and the Novikov equation. The local wellposedness of strong solutions for this equation in Sobolev space with is obtained, and persistence properties of the strong solutions are studied. Furthermore, under appropriate hypotheses, the existence of its weak solutions in low order Sobolev space with is established.
Keywords:
persistence properties; local wellposedness; weak solution1 Introduction
This work is concerned with the following onedimensional nonlinear dispersive PDE:
Obviously, if , , , equation (1.1) becomes the CamassaHolm equation,
where the variable represents the fluid velocity at time t and in the spatial direction x, and k is a nonnegative parameter related to the critical shallow water speed [1]. The CamassaHolm equation (1.2) is also a model for the propagation of axially symmetric waves in hyperelastic rods (cf.[2]). It is well known that equation (1.2) has also a biHamiltonian structure [3,4] and is completely integrable (see [5,6] and the indepth discussion in [7,8]). In [9], Qiao has shown that the CamassaHolm spectral problem yields two different integrable hierarchies of nonlinear evolution equations, one is of negative order CH hierachy while the other one is of positive order CH hierarchy. Its solitary waves are smooth if and peaked in the limiting case (cf.[1]). The orbital stability of the peaked solitons is proved in [10], and the stability of the smooth solitons is considered in [11]. It is worth pointing out that solutions of this type are not mere abstractions: the peakons replicate a feature that is characteristic for the waves of great height  waves of largest amplitude that are exact solutions of the governing equations for irrotational water waves (cf.[1214]). The explicit interaction of the peaked solitons is given in [15] and all possible explicit single soliton solutions are shown in [16]. The Cauchy problem for the CamassaHolm equation (1.2) has been studied extensively. It has been shown that this problem is locally wellposed for initial data with [1719]. Moreover, it has global strong solutions and also admits finite time blowup solutions [17,18,20,21]. On the other hand, it also has global weak solutions in [2225]. The advantage of the CamassaHolm equation in comparison with the KdV equation (1.2) lies in the fact that the CamassaHolm equation has peaked solitons and models the peculiar wave breaking phenomena [1,21].
For , , , equation (1.1) becomes a generalized CamassaHolm equation,
Wazwaz [26,27] studied the solitary wave solutions for the generalized CamassaHolm equation (1.3) with , , and the peakon wave solutions for this equation were studied in [2830], and the periodic blowup solutions and limit forms for (1.3) were obtained in [31]. In [30,32], the authors have given the traveling waves solution, peaked solitary wave solutions for (1.3).
On the other hand, taking , , in (1.1) we found the Novikov equation [33]:
The Novikov equation (1.4) possesses a matrix Lax pair, many conserved densities, a biHamiltonian structure as well as peakon solutions [34]. These apparently exotic waves replicate a feature that is characteristic of the waves of great heightwaves of largest amplitude that are exact solutions of the governing equations for water waves, as far as the details are concerned [13,35,36]. The Novikov equation possesses the explicit formulas for multipeakon solutions [37]. It has been shown that the Cauchy problem for the Novikov equation is locally wellposed in the Besov spaces and in Sobolev spaces and possesses the persistence properties [38,39]. In [40,41], the authors showed that the datatosolution map for equation (1.4) is not uniformly continuous on bounded subsets of for . Analogous to the CamassaHolm equation, the Novikov equation shows the blowup phenomenon [42] and has global weak solutions [43]. Recently, Zhao and Zhou [44] discussed the symbolic analysis and exact traveling wave solutions of a modified Novikov equation, which is new in that it has a nonlinear term instead of .
Other integrable CHtype equations with cubic nonlinearity have been discovered:
where γ is a constant. equation (1.5) was independently proposed by Fokas [45], by Fuchssteiner [46], and Olver and Rosenau [47] as a new generalization of integrable system by using the general method of triHamiltonian duality to the biHamiltonian representation of the modified Kortewegde Vries equation. Later, it was obtained by Qiao [48,49] from the twodimensional Euler equations, where the variables and represent, respectively, the velocity of the fluid and its potential density. Ivanov and Lyons [50] obtain a class of soliton solutions of the integrable hierarchy which has been put forward in a series of woks by Qiao [48,49]. It was shown that equation (1.5) admits the Laxpair and the Cauchy problem (1.5) may be solved by the inverse scattering transform method. The formation of singularities and the existence of peaked travelingwave solutions for equation (1.5) was investigated in [51]. The wellposedness, blowup mechanism, and persistence properties are given in [52]. It was also found that equation (1.5) is related to the shortpulse equation derived by Schäfer and Wayne [53].
Applying the method of pseudoparabolic regularization, Lai and Wu [54] investigated the local wellposedness and existence of weak solutions for the following generalized CamassaHolm equation with dissipative term:
where , and a, k, β are constants. Hakkaev and Kirchev [55] studied the local wellposedness and orbital stability of solitary wave solution for equation (1.6) with , and .
Motivated by the results mentioned above, the goal of this paper is to establish the wellposedness of strong solutions and weak solutions for problem (1.1). First, we use Kato’s theorem to obtain the existence and uniqueness of strong solutions for equation (1.1).
Theorem 1.1Letwith. Then there exists a maximal, and a unique solutionto the problem (1.1) such that
Moreover, the solution depends continuously on the initial data, i.e. the mapping
is continuous.
In [38,56,57], the spatial decay rates for the strong solution to the CamassaHolm Novikov equation were established provided that the corresponding initial datum decays at infinity. This kind of property is socalled the persistence property. Similarly, for equation (1.1), we also have the following persistence properties for the strong solution.
Theorem 1.2Assume thatwithsatisfies
for some (respectively, ), then the corresponding strong solutionto equation (1.1) satisfies for some
uniformly in the time interval.
Theorem 1.3Assume that, , andwithsatisfies
for some (respectively, , ), then the corresponding strong solutionto equation (1.1) satisfies for some
uniformly in the time interval.
Remark 1.1 The notations mean that
Finally, we have the following theorem for the existence of a weak solution for equation (1.1).
Theorem 1.4Suppose thatwithand. Then there exists a life spansuch that problem (1.1) has a weak solutionin the sense of a distribution and.
The plan of this paper is as follows. In the next section, the local wellposedness and persistence properties of strong solutions for the problem (1.1) are established, and Theorems 1.11.3 are proved. The existence of weak solutions for the problem (1.1) is proved in Section 3, and this proves Theorem 1.4.
2 Wellposedness and persistence properties of strong solutions
Notation The space of all infinitely differentiable functions with compact support in is denoted by . Let p be any constant with and denote to be the space of all measurable functions f such that . The space with the standard norm . For any real number s, let denote the Sobolev space with the norm defined by
where . Let denote the class of continuous functions from to and .
Proof of Theorem 1.1 To prove wellposedness we apply Kato’s semigroup approach [58]. For this, we rewrite the Cauchy problem of equation (1.1) as follows for the transport equation:
where . and . Let , , and . Following closely the considerations made in [17,54,59], we obtain the statement of Theorem 1.1. □
Proof of Theorem 1.2 We introduce the notation . The first step we will give estimates on . Integrating the both sides with respect to x variable by multiplying the first equation of (2.1) by with , we get
Note that the estimates
and
are true. Moreover, using Hölder’s inequality
From equation (2.2) we can obtain
Since as for any . From the above inequality we deduce that
where we use
Because of Gronwall’s inequality, we get
Next, we will give estimates on . Differentiating (2.1) with respect to the xvariable produces the equation
Multiplying this equation by with , integrating the result in the xvariable, and using integration by parts:
From the above inequalities, we also can get the following inequality:
where we use . Then passing to the limit in this inequality and using Gronwall’s inequality one can obtain
We shall now repeat the arguments using the weight
where . Observe that for all N we have
Using the notation , from (2.1) we get
and from (2.3), we also obtain
We need to eliminate the second derivatives in the second term in the above equality. Thus, combining integration by parts and equation (2.4) we find
Hence, as in the weightless case, we have
A simple calculation shows that there exists , depending only on such that for any ,
Thus, we have
and
Using the same method, we can estimate the other terms:
and
Thus, it follows that there exists a constant which depends only on M, m, n, k, a, and T, such that
Hence, for any and any we have
Finally, taking the limit as N goes to infinity we find that for any ,
which completes the proof of Theorem 1.2. □
Next, we give a simple proof for Theorem 1.3.
Proof of Theorem 1.3 We should use Theorem 1.3 to prove this theorem.
For any , integrating equation (2.1) over the time interval we get
From Theorem 1.2, it follows that
and so
We shall show that the last term in equation (2.5) is ; thus we have
From the given condition and Theorem 1.2. we know as . Since
we have
Thus
From equation (2.5) and as , we know
By the arbitrariness of , we get
uniformly in the time interval . This completes the proof of Theorem 1.3. □
3 Existence of solution of the regularized equation
In order to prove Theorem 1.4, we consider the regularized problem for equation (1.1) in the following form:
where , , and a, k are constants. One can easily check that when , equation (3.1) is equivalent to the IVP (1.1).
Before giving the proof of Theorem 1.4, we give several lemmas.
Lemma 3.1 (See [54])
Letpandqbe real numbers such that. Then
Lemma 3.2Letwith. Then the Cauchy problem (3.1) has a unique solutionwheredepends on. If, the solutionexists for all time. In particular, when, the corresponding solution is a classical globally defined solution of problem (3.1).
Proof First, we note that, for any and any s, the integral operator
defines a bounded linear operator on the indicated Sobolev spaces.
To prove the existence of a solution to the problem (3.1), we apply the operator to both sides of equation (3.1) and then integrate the resulting equations with regard to t. This leads to the following equations:
Suppose that is the operator in the righthand side of equation (3.2). For fixed , we get
Since is an algebra for , we have the inequalities
and
where , only depend on n. Suppose that both u and v are in the closed ball of radius R about the zero function in ; by the above inequalities, we obtain
where and C only depend on a, k, m, n. Choosing T sufficiently small such that , we know that is a contraction. Applying the above inequality yields
Taking T sufficiently small so that , we deduce that maps to itself. It follows from the contractionmapping principle that the mapping has a unique fixed point u in .
For , multiplying the first equation of the system (3.1) by 2u, integrating with respect to x, one derives
from which we have the conservation law
The global existence result follows from the integral from equation (3.2) and equation (3.3). □
Now we study the norms of solutions of equation (3.1) using energy estimates. First, recall the following two lemmas.
Lemma 3.3 (See [58])
herecis a constant depending only onr.
Lemma 3.4 (See [58])
wheredenotes the commutator of the linear operatorsAandB, andcis a constant depending only onr.
Theorem 3.1Suppose that, for some, the functionsare a solution of equation (3.1) corresponding to the initial data. Then the following inequality holds:
For any real number, there exists a constantcdepending only onqsuch that
For, there is a constantcindependent ofϵsuch that
Proof Using and (3.3) derives (3.4).
Since and the Parseval equality gives rise to
For any , applying to both sides of the first equation of (3.1), respectively, and integrating with regard to x again,using integration by parts, one obtains
We will estimate the terms on the righthand side of (3.7) separately. For the first term, by using the CauchySchwartz inequality and Lemmas 3.3 and 3.4, we have
Using the above estimate to the second term on the righthand side of equation (3.7) yields
For the fourth term on the righthand side of equation (3.7), using the CauchySchwartz inequality and Lemma 3.3, we obtain
For the last term on the righthand side of equation (3.7), using Lemma 3.3 repeatedly results in
It follows from equations (3.7)(3.11) that there exists a constant c depending only on a, m, n, s such that
Integrating both sides of the above inequality with respect to t results in inequality (3.5).
To estimate the norm of , we apply the operator to both sides of the first equation of the system (3.1) to obtain the equation
Applying to both sides of equation (3.12) for gives rise to
For the righthand of equation (3.13), we have
and
Since
Using Lemma 3.3, and , we have
and
By the CauchySchwartz inequality and Lemma 3.3, we get
Substituting equations (3.14)(3.19) into equation (3.13) yields the inequality
with a constant . This completes the proof of Theorem 3.1. □
For a real number s with , suppose that the function is in , and let be the convolution of the function and be such that the Fourier transform of ϕ satisfies , and for any . Thus we have . It follows from Theorem 3.1 that for each ϵ satisfying , the Cauchy problem
has a unique solution , in which may depend on ϵ.
For an arbitrary positive Sobolev exponent , we give the following lemma.
Lemma 3.5Forwithand, the following estimates hold for anyϵwith:
wherecis a constant independent ofϵ.
Proof This proof is similar to that of Lemma 5 in [60] and Lemma 4.5 in [61], we omit it here. □
Remark 3.1 For , using , , equations (3.4), (3.22), and (3.23), we obtain
Theorem 3.2Ifwithsuch that. Letbe defined as in the system (3.21). Then there exist two constants, cand, which are independent ofϵ, such thatof problem (3.21) satisfiesfor any.
Proof Using the notation and differentiating equation (3.21) or equation (3.12) with respect to x give rise to
Letting be an integer and multiplying the above equality by , then integrating the resulting equation with respect to x, and using
we find the equality
Applying Hölder’s inequality, we get
Since as for any , integrating the above inequality with respect to t and taking the limit as result in the estimate
Using the algebraic property of with and the inequality (3.26) leads to
and
where c is a constant independent of ϵ. Using (3.6), (3.29), and the above inequality, we get
where c is independent of ϵ. Furthermore, for any fixed , there exists a constant such that . By (3.6) and (3.26), one has
Making use of the Gronwall inequality with equation (3.5), with , , and equation (3.26), yields
From equations (3.22)(3.23) and (3.31)(3.32), we have
For , applying equations (3.28), (3.30), and (3.33), we obtain
It follows from the contractionmapping principle that there is a such that the equation
has a unique solution . From the above inequality, we know that the variable T only depends on c and . Using the theorem present on p.51 in [28] or Theorem II in Section 1.1 in [62] one derives that there are constants and independent of ϵ such that for arbitrary , which leads to the conclusion of Theorem 3.2. □
Using equations (3.5)(3.6) in Theorem 3.1 and Theorem 3.2, with the notation and with Gronwall’s inequality, results in the inequalities
and
where , and . It follows from Aubin’s compactness theorem that there is a subsequence of , denoted by , such that and their temporal derivatives are weakly convergent to a function and its derivative in and , respectively. Moreover, for any real number , is convergent to the function u strongly in the space for and converges to strongly in the space for . Thus, we can prove the existence of a weak solution to equation (1.1).
Proof of Theorem 1.4 From Theorem 3.2, we know that is bounded in the space . Thus, the sequences , are weakly convergent to u, in the space for any , separately. Hence, u satisfies the equation
with and . Since is a separable Banach space and is a bounded sequence in the dual space of X, there exists a subsequence of , still denoted by , weakly star convergent to a function v in . As weakly converges to in , as a result almost everywhere. Thus, we obtain . □
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
This paper is the result of joint work of all authors who contributed equally to the final version of this paper. All authors read and approved the final manuscript.
Acknowledgements
The authors are very grateful to the anonymous reviewers for their careful reading and useful suggestions, which greatly improved the presentation of the paper. This work is supported in part by NSFC grant 11301573 and in part by the funds of Chongqing Normal University (13XLB006 and 13XWB008) and in part by the Program of Chongqing Innovation Team Project in University under Grant No. KJTD201308.
References

Camassa, R, Holm, D, Hyman, J: A new integrable shallow water equation. Adv. Appl. Mech.. 31, 1–33 (1994)

Constantin, A, Strauss, WA: Stability of a class of solitary waves in compressible elastic rods. Phys. Lett. A. 270, 140–148 (2000). Publisher Full Text

Fokas, AS, Fuchssteiner, B: Symplectic structures, their Bäcklund transformation and hereditary symmetries. Physica, D. 4, 47–66 (1981). Publisher Full Text

Lenells, J: Conservation laws of the CamassaHolm equation. J. Phys. A. 38, 869–880 (2005). Publisher Full Text

Camassa, R, Holm, D: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett.. 71, 1661–1664 (1993). PubMed Abstract  Publisher Full Text

Constantin, A: On the scattering problem for the CamassaHolm equation. Proc. R. Soc. Lond.. 457, 953–970 (2001). Publisher Full Text

Boutet, A, Monvel, D, Shepelsky, D: RiemannHilbert approach for the CamassaHolm equation on the line. C. R. Math. Acad. Sci. Paris. 343, 627–632 (2006). Publisher Full Text

Constantin, A, Gerdjikov, V, Ivanov, R: Inverse scattering transform for the CamassaHolm equation. Inverse Probl.. 22, 2197–2207 (2006). Publisher Full Text

Qiao, ZJ: The CamassaHolm hierarchy, Ndimensional integrable systems, and algebrogeometric solution on a symplectic submanifold. Commun. Math. Phys.. 239, 309–341 (2003). Publisher Full Text

Constantin, A, Strauss, WA: Stability of peakons. Commun. Pure Appl. Math.. 53, 603–610 (2000). Publisher Full Text

Constantin, A, Strauss, WA: Stability of the CamassaHolm solitons. J. Nonlinear Sci.. 12, 415–422 (2002). Publisher Full Text

Constantin, A: The trajectories of particles in Stokes waves. Invent. Math.. 166, 523–535 (2006). Publisher Full Text

Constantin, A, Escher, J: Analyticity of periodic traveling free surface water waves with vorticity. Ann. Math.. 173, 559–568 (2011). Publisher Full Text

Toland, JF: Stokes waves. Topol. Methods Nonlinear Anal.. 7, 1–48 (1996)

Beals, R, Sattinger, D, Szmigielski, J: Acoustic scattering and the extended Kortewegde Vries hierarchy. Adv. Math.. 140, 190–206 (1998). Publisher Full Text

Qiao, ZJ, Zhang, GP: On peaked and smooth solitons for the CamassaHolm equation. Europhys. Lett.. 73, 657–663 (2006). Publisher Full Text

Constantin, A, Escher, J: Global existence and blowup for a shallow water equation. Ann. Sc. Norm. Super. Pisa, Cl. Sci.. 26, 303–328 (1998)

Li, YA, Olver, PJ: Wellposedness and blowup solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Equ.. 162, 27–63 (2000). Publisher Full Text

RodriguezBlanco, G: On the Cauchy problem for the CamassaHolm equation. Nonlinear Anal.. 46, 309–327 (2001). Publisher Full Text

Constantin, A: Global existence of solutions and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier. 50, 321–362 (2000). Publisher Full Text

Constantin, A, Escher, J: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math.. 181, 229–243 (1998). Publisher Full Text

Bressan, A, Constantin, A: Global conservative solutions of the CamassaHolm equation. Arch. Ration. Mech. Anal.. 183, 215–239 (2007). Publisher Full Text

Constantin, A, Escher, J: Global weak solutions for a shallow water equation. Indiana Univ. Math. J.. 47, 1527–1545 (1998)

Constantin, A, Molinet, L: Global weak solutions for a shallow water equation. Commun. Math. Phys.. 211, 45–61 (2000). Publisher Full Text

Xin, ZP, Zhang, P: On the weak solutions to a shallow water equation. Commun. Pure Appl. Math.. 53, 1411–1433 (2000). Publisher Full Text

Wazwaz, A: Solitary wave solutions for modified forms of DegasperisProcesi and CamassaHolm equations. Phys. Lett. A. 352, 500–504 (2006). Publisher Full Text

Wazwaz, A: New solitary wave solutions to the modified forms of DegasperisProcesi and CamassaHolm equations. Appl. Math. Comput.. 186, 130–141 (2007). Publisher Full Text

Liu, ZR, Ouyang, ZY: A note on solitary waves for modified forms of CamassaHolm and DegasperisProcesi equations. Phys. Lett. A. 366, 377–381 (2007). Publisher Full Text

Liu, ZR, Qian, ZF: Peakons and their bifurcation in a generalized CamassaHolm equation. Int. J. Bifurc. Chaos. 11, 781–792 (2001). Publisher Full Text

Tian, LX, Song, XY: New peaked solitary wave solutions of the generalized CamassaHolm equation. Chaos Solitons Fractals. 21, 621–637 (2004)

Liu, ZR, Guo, BL: Periodic blowup solutions and their limit forms for the generalized CamassaHolm equation. Prog. Nat. Sci.. 18, 259–266 (2008). Publisher Full Text

Shen, JW, Xu, W: Bifurcations of smooth and nonsmooth travelling wave solutions in the generalized CamassaHolm equation. Chaos Solitons Fractals. 26, 1149–1162 (2005). Publisher Full Text

Novikov, YS: Generalizations of the CamassaHolm equation. J. Phys. A. 42, (2009) Article ID 342002

Hone, ANW, Wang, JP: Integrable peakon equations with cubic nonlinearity. J. Phys. A, Math. Theor.. 41, (2008) Article ID 372002

Constantin, A: The trajectories of particles in Stokes waves. Invent. Math.. 166, 523–535 (2006). Publisher Full Text

Constantin, A, Escher, J: Particle trajectories in solitary water waves. Bull. Am. Math. Soc.. 44, 423–431 (2007). Publisher Full Text

Hone, ANW, Lundmark, H, Szmigielski, J: Explicit multipeakon solutions of Novikov’s cubically nonlinear integrable CamassaHolm equation. Dyn. Partial Differ. Equ.. 6, 253–289 (2009). Publisher Full Text

Ni, LD, Zhou, Y: Wellposedness and persistence properties for the Novikov equation. J. Differ. Equ.. 250, 3002–3201 (2011). Publisher Full Text

Yan, W, Li, Y, Zhang, Y: The Cauchy problem for the integrable Novikov equation. J. Differ. Equ.. 253, 298–318 (2012). Publisher Full Text

Grayshan, K: Peakon solutions of the Novikov equation and properties of the datatosolution map. J. Math. Anal. Appl.. 397, 515–521 (2013). Publisher Full Text

Himonas, A, Holliman, C: The Cauchy problem for the Novikov equation. Nonlinearity. 25, 449–479 (2012). Publisher Full Text

Jiang, ZH, Ni, LD: Blowup phenomena for the integrable Novikov equation. J. Math. Anal. Appl.. 385, 551–558 (2012). Publisher Full Text

Wu, SY, Yin, ZY: Global weak solutions for the Novikov equation. J. Phys. A, Math. Theor.. 44, (2011) Article ID 055202

Zhao, L, Zhou, S: Symbolic analysis and exact travelling wave solutions to a new modified Novikov equation. Appl. Math. Comput.. 217, 590–598 (2010). Publisher Full Text

Fokas, AS: The Kortewegde Vries equation and beyond. Acta Appl. Math.. 39, 295–305 (1995). Publisher Full Text

Fuchssteiner, B: Some tricks from the symmetrytoolbox for nonlinear equations: generalizations of the CamassaHolm equation. Physica, D. 95, 229–243 (1996). Publisher Full Text

Olver, PJ, Rosenau, P: TriHamiltonian duality between solitons and solitarywave solutions having compact support. Phys. Rev. E. 53, 1900–1906 (1996). Publisher Full Text

Qiao, ZJ: A new integrable equation with cuspons and shapepeaks solitons. J. Math. Phys.. 47, (2006) Article ID 112701

Qiao, ZJ: New integrable hierarchy, its parametric solutions, cuspons, onepeak solitons, and shape peak solitons. J. Math. Phys.. 48, (2007) Article ID 082701

Ivanov, RI, Lyons, T: Dark solitons of the Qiao’s hierarchy. J. Math. Phys.. 53, (2012) Article ID 123701

Gui, GL, Liu, Y, Olver, PL, Qu, CZ: Wavebreaking and peakons for a modified CamassaHolm equation. Commun. Math. Phys.. 319, 731–759 (2012)

Fu, Y, Gui, GL, Liu, Y, Qu, CZ: On the Cauchy problem for the integrable modified CamassaHolm equation with cubic nonlinearity. J. Differ. Equ.. 255, 1905–1938 (2013). Publisher Full Text

SchäferWayne, T: Propagation of ultrashort optical pulses in cubic nonlinear media. Physica, D. 196, 90–105 (2004). Publisher Full Text

Lai, SY, Wu, YH: The local wellposedness and existence of weak solutions for a generalized CamassaHolm equation. J. Differ. Equ.. 248, 2038–2063 (2010). Publisher Full Text

Hakkaev, S, Kirchev, K: Local wellposedness and orbital stability of solitary wave solutions for the generalized CamassaHolm equation. Commun. Partial Differ. Equ.. 30, 761–781 (2005). Publisher Full Text

Himonas, AA, Misiolek, G, Ponce, G, Zhou, Y: Persistence properties and unique continuation of solutions of the CamassaHolm equation. Commun. Math. Phys.. 271, 511–522 (2007). Publisher Full Text

Ni, LD, Zhou, Y: A new asymptotic behavior of solutions to the CamassaHolm equation. Proc. Am. Math. Soc.. 140, 607–614 (2012). Publisher Full Text

Kato, T: Quasilinear equations of evolution with applications to partial differential equations. Spectral Theory and Differential Equations, pp. 25–70. Springer, Berlin (1975)

Mu, CL, Zhou, SM, Zeng, R: Wellposedness and blowup phenomena for a higher order shallow water equation. J. Differ. Equ.. 251, 3488–3499 (2011). Publisher Full Text

Bona, J, Smith, R: The initial value problem for the Kortewegde Vries equation. Philos. Trans. R. Soc. Lond. Ser. A. 278, 555–601 (1975). Publisher Full Text

Lai, SY, Wu, YH: A model containing both the CamassaHolm and DegasperisProcesi equations. J. Math. Anal. Appl.. 374, 458–469 (2011). Publisher Full Text

Walter, W: Differential and Integral Inequalities, Springer, New York (1970)