Skip to main content

Existence of two positive solutions for a class of second order impulsive singular integro-differential equations on the half line

Abstract

In this paper, the author discusses the existence of two positive solutions for an infinite boundary value problem of second order impulsive singular integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type.

1 Introduction

The theory of impulsive differential equations has been emerging as an important area of investigation in recent years (see [13]). Many problems have been investigated for impulsive differential equations, impulsive functional differential equations and impulsive differential inclusions. These problems include existence of solutions, stability theory, geometric properties, applications, etc. There is a vast literature on existence of solutions: by using upper and lower solutions together with the monotone iterative technique to obtain the extremal solutions [48]; by using fixed point theorems to obtain the existence of solution and multiple solutions [914]; by using the Leray-Schauder degree theory or fixed point index theory to obtain multiple solutions [1519]; by using the variational method to obtain the existence of solution and existence of infinite many solutions [2025]. In recent article [14], the author discussed the existence of two positive solutions for an infinite boundary value problem of first order impulsive singular integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type, which was established by the author in [26] (see also [2730]). Now, in this article, we shall discuss such problem for a class of second order equations. The discussion for second order equations is more complicated than the first order case. We must introduce a new Banach space and a new cone in it to control both the unknown function and its derivative so that we can still use the fixed point theorem of cone expansion and compression with norm type.

Consider the infinite boundary value problem (IBVP) for second order impulsive singular integro-differential equation of mixed type on the half line:

$$ \left \{ \begin{array}{l} u''(t)=f(t,u(t),u'(t),(Tu)(t),(Su)(t)), \quad \forall t\in R'_{++}, \\ \Delta u |_{t=t_{k}}=I_{k}(u'(t_{k}^{-})) \quad (k=1,2,3,\ldots), \\ \Delta u' |_{t=t_{k}}=\bar{I}_{k}(u'(t_{k}^{-}))\quad (k=1,2,3,\ldots), \\ u(0)=0,\qquad u'(\infty)=\beta u'(0), \end{array} \right . $$
(1)

where R denotes the set of all real numbers, \(R_{+}=\{x\in R: x\geq 0\}\), \(R_{++}=\{x\in R: x>0\}\), \(0< t_{1}<\cdots<t_{k}<\cdots\), \(t_{k}\rightarrow\infty\), \(R'_{++}=R_{++}\backslash\{t_{1},\ldots ,t_{k},\ldots\}\), \(f\in C[R_{++}\times R_{++}\times R_{++}\times R_{+}\times R_{+},R_{+}]\), \(I_{k}, \bar{I}_{k}\in C[R_{++},R_{+}]\) (\(k=1,2,3,\ldots\)), \(\beta>1\), \(u'(\infty)=\lim_{t\rightarrow \infty}u'(t)\) and

$$ (Tu) (t)=\int_{0}^{t}K(t,s)u(s)\,ds,\qquad (Su) (t)=\int_{0}^{\infty }H(t,s)u(s)\,ds, $$
(2)

\(K\in C[D,R_{+}]\), \(D=\{(t,s)\in R_{+}\times R_{+}: t\geq s\}\), \(H\in C[R_{+}\times R_{+},R_{+}]\). \(\Delta u |_{t=t_{k}}\) and \(\Delta u' |_{t=t_{k}}\) denote the jumps of \(u(t)\) and \(u'(t)\) at \(t=t_{k}\), respectively, i.e.

$$\Delta u |_{t=t_{k}}=u\bigl(t_{k}^{+}\bigr)-u\bigl(t_{k}^{-} \bigr),\qquad \Delta u' |_{t=t_{k}}=u' \bigl(t_{k}^{+}\bigr)-u'\bigl(t_{k}^{-}\bigr), $$

where \(u(t_{k}^{+})\) and \(u(t_{k}^{-})\) represent the right and left limits of \(u(t)\) at \(t=t_{k}\), respectively, and \(u'(t_{k}^{+})\) and \(u'(t_{k}^{-})\) represent the right and left limits of \(u'(t)\) at \(t=t_{k}\), respectively. In what follows, we always assume that

$$\begin{aligned}& \lim_{t\rightarrow0^{+}}f(t,u,v,w,z)=\infty,\quad \forall u,v\in R_{++}, w,z\in R_{+}, \end{aligned}$$
(3)
$$\begin{aligned}& \lim_{u\rightarrow0^{+}}f(t,u,v,w,z)=\infty,\quad \forall t,v\in R_{++}, w,z\in R_{+} \end{aligned}$$
(4)

and

$$ \lim_{v\rightarrow0^{+}}f(t,u,v,w,z)=\infty,\quad \forall t,u\in R_{++}, w,z\in R_{+}, $$
(5)

i.e. \(f(t,u,v,w,z)\) is singular at \(t=0, u=0\) and \(v=0\). We also assume that

$$ \lim_{v\rightarrow0^{+}}I_{k}(v)=\infty\quad (k=1,2,3,\ldots) $$
(6)

and

$$ \lim_{v\rightarrow0^{+}}\bar{I}_{k}(v)=\infty \quad (k=1,2,3, \ldots), $$
(7)

i.e. \(I_{k}(v)\) and \(\bar{I}_{k}(v)\) (\(k=1,2,3,\ldots\)) are singular at \(v=0\). Let \(\mathit{PC}[R_{+},R]\) = {\(u: u\) is a real function on \(R_{+}\) such that \(u(t)\) is continuous at \(t\neq t_{k}\), left continuous at \(t=t_{k}\), and \(u(t^{+}_{k})\) exists, \(k=1,2,3,\ldots\)} and \(\mathit{PC}^{1}[R_{+},R]\) = {\(u\in \mathit{PC}[R_{+},R]: u'(t)\) is continuous at \(t\neq t_{k}\), and \(u'(t_{k}^{+})\) and \(u'(t_{k}^{-})\) exist for \(k=1,2,3,\ldots\)}. Let \(u\in \mathit{PC}^{1}[R_{+},R]\). For \(0< h<t_{k}-t_{k-1}\), by the mean value theorem, there exists \(t_{k}-h<\xi_{k} <t_{k}\) such that

$$u(t_{k})-u(t_{k}-h)=u'(\xi_{k})h, $$

hence the left derivative of \(u(t)\) at \(t=t_{k}\), which is denoted by \(u'_{-}(t_{k})\), exists, and

$$u'_{-}(t_{k})=\lim_{h\rightarrow0^{+}} \frac{u(t_{k})-u(t_{k}-h)}{h}=u'\bigl(t_{k}^{-}\bigr). $$

In what follows, it is understood that \(u'(t_{k})=u'_{-}(t_{k})\). So, for \(u\in \mathit{PC}^{1}[R_{+},R]\), we have \(u'\in \mathit{PC}[R_{+},R]\).

A function \(u\in \mathit{PC}^{1}[R_{+},R]\cap C^{2}[R'_{++},R]\) is called a positive solution of IBVP (1) if \(u(t)>0\) for \(t\in R_{++}\) and \(u(t)\) satisfies (1). Now, we need to introduce a new space \(\mathit{DPC}^{1}[R_{+},R]\) and a new cone Q in it. Let

$$\mathit{DPC}^{1}[R_{+},R]= \biggl\{ u\in \mathit{PC}^{1}[R_{+},R]: \sup _{t\in R_{++}}\frac {|u(t)|}{t}< \infty, \sup_{t\in R_{+}} \bigl\vert u'(t)\bigr\vert <\infty \biggr\} . $$

It is easy to see that \(\mathit{DPC}^{1}[R_{+},R]\) is a Banach space with the norm

$$\|u\|_{D}=\max\bigl\{ \|u\|_{S}, \bigl\Vert u'\bigr\Vert _{B}\bigr\} , $$

where

$$\|u\|_{S}=\sup_{t\in R_{++}}\frac{|u(t)|}{t},\qquad \bigl\Vert u'\bigr\Vert _{B}=\sup_{t\in R_{+}} \bigl\vert u'(t)\bigr\vert . $$

Let \(W=\{u\in \mathit{DPC}^{1}[R_{+},R]: u(t)\geq0, u'(t)\geq0, \forall t\in R_{+}\} \) and

$$Q= \biggl\{ u\in \mathit{DPC}^{1}[R_{+},R]: \inf_{t\in R_{++}} \frac{u(t)}{t}\geq\beta ^{-1}\|u\|_{S}, \inf _{t\in R_{+}}u'(t)\geq\beta^{-1}\bigl\Vert u'\bigr\Vert _{B} \biggr\} . $$

Obviously, W and Q are two cones in the space \(\mathit{DPC}^{1}[R_{+},R]\) and \(Q\subset W\) (for details on cone theory, see [28]). Let \(Q_{+}=\{u\in Q: \|u\|_{D}>0\}\) and \(Q_{pq}=\{u\in Q: p\leq\|u\|_{D}\leq q\}\) for \(q>p>0\).

2 Several lemmas

Remark 1

(a) For \(u\in \mathit{DPC}^{1}[R_{+},R]\), we have \(u(0)=0\). This is clear since \(u(0)\neq0\) implies

$$\sup_{t\in R_{++}}\frac{|u(t)|}{t}={\infty}. $$

(b) For \(u\in Q_{+}\), we have \(u(t)>0\) for \(t\in R_{++}\) and \(u'(t)>0\) for \(t\in R_{+}\).

Lemma 1

For \(u\in Q\), we have

$$\begin{aligned}& \Vert u\Vert _{S}\geq\beta^{-1}\bigl\Vert u'\bigr\Vert _{B}, \qquad \bigl\Vert u' \bigr\Vert _{B}\geq\beta^{-1}\Vert u\Vert _{S}, \end{aligned}$$
(8)
$$\begin{aligned}& \beta^{-1}\Vert u\Vert _{D}\leq \Vert u\Vert _{S}\leq \Vert u\Vert _{D}, \qquad \beta^{-1} \Vert u\Vert _{D}\leq \bigl\Vert u'\bigr\Vert _{B}\leq \Vert u\Vert _{D} \end{aligned}$$
(9)

and

$$ \beta^{-2}\|u\|_{D}\leq\frac{u(t)}{t}\leq\|u \|_{D},\quad \forall t\in R_{++};\qquad \beta^{-2} \|u\|_{D}\leq u'(t)\leq\|u\|_{D}, \quad \forall t\in R_{+}. $$
(10)

Proof

Since (8) implies (9) and (8) and (9) imply (10), we need only to show (8).

For fixed \(0< t<t_{1}\), observing \(u(0)=0\) and by the mean value theorem, there exists \(0<\xi<t\) such that

$$\frac{u(t)}{t}=\frac{u(t)-u(0)}{t}=u'(\xi). $$

So,

$$\|u\|_{S}=\sup_{s\in R_{++}}\frac{u(s)}{s}\geq \frac{u(t)}{t}=u'(\xi )\geq\inf_{s\in R_{+}}u'(s) \geq\beta^{-1}\bigl\Vert u'\bigr\Vert _{B}. $$

On the other hand, for any \(0< t<t_{1}\), we have

$$\frac{u(t)}{t}\geq\beta^{-1}\|u\|_{S}, $$

so,

$$u'(0)=\lim_{t\rightarrow0^{+}}\frac{u(t)-u(0)}{t}=\lim _{t\rightarrow 0^{+}}\frac{u(t)}{t}\geq\beta^{-1}\|u \|_{S}, $$

hence,

$$\bigl\Vert u'\bigr\Vert _{B}=\sup _{s\in R_{+}}u'(s)\geq u'(0)\geq \beta^{-1}\|u\|_{S}. $$

 □

Let us list some conditions.

(H1) \(\sup_{t\in J}\int_{0}^{t}K(t,s)s\, ds<\infty\), \(\sup_{t\in J}\int_{0}^{\infty}H(t,s)s\, ds<\infty\) and

$$\lim_{t'\rightarrow t}\int_{0}^{\infty}\bigl\vert H\bigl(t',s\bigr)-H(t,s)\bigr\vert s\, ds=0,\quad \forall t\in R_{+}. $$

In this case, let

$$k^{*}=\sup_{t\in R_{+}}\int_{0}^{t}K(t,s)s \, ds,\qquad h^{*}=\sup_{t\in R_{+}}\int_{0}^{\infty }H(t,s)s \, ds. $$

(H2) There exist \(a,b\in C[R_{++},R_{+}]\), \(g\in C[R_{++},R_{+}]\) and \(G\in C[R_{++}\times R_{+}\times R_{+},R_{+}]\) such that

$$f(t,u,v,w,z)\leq a(t)g(u)+b(t)G(v,w,z), \quad \forall t,u,v\in R_{++}, w,z\in R_{+} $$

and

$$a_{r}^{*}=\int_{0}^{\infty}a(t)g_{r}(t) \, dt< \infty $$

for any \(r>0\), where

$$g_{r}(t)=\max\bigl\{ g(u): \beta^{-2}rt\leq u\leq rt\bigr\} $$

and

$$b^{*}=\int_{0}^{\infty}b(t)\, dt< {\infty}. $$

(H3) \(I_{k}(v)\leq t_{k}\bar{I}_{k}(v)\), \(\forall v\in R_{++}\) (\(k=1,2,3,\ldots\)), and there exist \(\gamma_{k}\in R_{+}\) (\(k=1,2,3,\ldots\)) and \(F\in C[R_{++},R_{+}]\) such that

$$\bar{I}_{k}(v)\leq\gamma_{k}F(v), \quad \forall v\in R_{++}\ (k=1,2,3,\ldots) $$

and

$$\bar{\gamma}=\sum_{k=1}^{\infty}t_{k} \gamma_{k}< \infty, $$

and, consequently,

$$\gamma^{*}=\sum_{k=1}^{\infty} \gamma_{k}\leq t_{1}^{-1}\bar{\gamma}< {\infty}. $$

It is clear: if condition (H3) is satisfied, then (6) implies (7).

(H4) There exists \(c\in C[R_{++},R_{++}]\) such that

$$\frac{f(t,u,v,w,z)}{c(t)v}\rightarrow\infty\quad \mbox{as }v\rightarrow\infty $$

uniformly for \(t,u\in R_{++}\), \(w,z\in R_{+}\), and

$$c^{*}=\int_{0}^{\infty}c(t)\, dt< \infty. $$

(H5) There exists \(d\in C[R_{++},R_{++}]\) such that

$$\bigl[d(t)\bigr]^{-1}f(t,u,v,w,z)\rightarrow\infty \quad \mbox{as }v \rightarrow0^{+} $$

uniformly for \(t,u\in R_{++}\), \(w,z\in R_{+}\), and

$$d^{*}=\int_{0}^{\infty}d(t)\, dt< \infty. $$

Remark 2

It is clear: if condition (H1) is satisfied, then the operators T and S defined by (2) are bounded linear operators from \(\mathit{DPC}^{1}[R_{+},R]\) into \(\mathit{BC}[R_{+},R]\) (the Banach space of all bounded continuous functions \(u(t)\) on \(R_{+}\) with the norm \(\|u\|_{B}=\sup_{t\in R_{+}}|u(t)|\)) and \(\|T\|\leq k^{*}\), \(\|S\|\leq h^{*}\); moreover, we have \(T(\mathit{DPC}^{1}[R_{+},R_{+}])\subset \mathit{BC}[R_{+},R_{+}]\) (\(\mathit{BC}[R_{+},R_{+}]=\{u\in \mathit{BC}[R_{+},R]: u(t)\geq0, \forall t\in R_{+}\}\)) and \(S(\mathit{DPC}^{1}[R_{+},R_{+}])\subset \mathit{BC}[R_{+},R_{+}]\).

Remark 3

Condition (H4) means that the function \(f(t,u,v,w,z)\) is superlinear with respect to v.

Remark 4

Condition (H5) means that the function \(f(t,u,v,w,z)\) is singular at \(v=0\) and it is stronger than (5).

Remark 5

In what follows, we need the following two formulas (see [6], Lemma 1):

  1. (a)

    If \(u\in \mathit{PC}[R_{+},R]\cap C^{1}[R'_{++},R]\), then

    $$ u(t)=u(0)+\int_{0}^{t}u'(s)\,ds+\sum _{0< t_{k}<t}\bigl[u\bigl(t_{k}^{+}\bigr)-u \bigl(t_{k}^{-}\bigr)\bigr], \quad \forall t\in R_{+}. $$
    (11)
  2. (b)

    If \(u\in \mathit{PC}^{1}[R_{+},R]\cap C^{2}[R'_{++},R]\), then

    $$\begin{aligned} u(t) =&u(0)+tu'(0)+\int_{0}^{t}(t-s)u''(s) \,ds \\ &{}+\sum_{0< t_{k}<t} \bigl\{ \bigl[u\bigl(t_{k}^{+} \bigr)-u\bigl(t_{k}^{-}\bigr)\bigr]+(t-t_{k}) \bigl[u'\bigl(t_{k}^{+}\bigr)-u' \bigl(t_{k}^{-}\bigr)\bigr] \bigr\} ,\quad \forall t\in R_{+}. \end{aligned}$$
    (12)

We shall reduce IBVP (1) to an impulsive integral equation. To this end, we first consider operator A defined by

$$\begin{aligned} (Au) (t) =&\frac{t}{\beta-1} \Biggl\{ \int_{0}^{\infty }f \bigl(s,u(s),u'(s),(Tu) (s),(Su) (s)\bigr)\,ds+\sum _{k=1}^{\infty}\bar{I}_{k}\bigl(u' \bigl(t_{k}^{-}\bigr)\bigr) \Biggr\} \\ &{}+\int_{0}^{t}(t-s)f\bigl(s,u(s),u'(s),(Tu) (s),(Su) (s)\bigr)\,ds \\ &{}+\sum_{0< t_{k}<t} \bigl\{ I_{k} \bigl(u'\bigl(t_{k}^{-}\bigr)\bigr)+(t-t_{k}) \bar{I}_{k}\bigl(u'\bigl(t_{k}^{-}\bigr)\bigr) \bigr\} ,\quad \forall t\in R_{+}. \end{aligned}$$
(13)

In what follows, we write \(J_{1}=[0,t_{1}]\), \(J_{k}=(t_{k-1},t_{k}]\) (\(k=2,3,4,\ldots\)).

Lemma 2

If conditions (H1)-(H3) are satisfied, then operator A defined by (13) is a continuous operator from \(Q_{+}\) into Q; moreover, for any \(q>p>0\), \(A(Q_{pq})\) is relatively compact.

Proof

Let \(u\in Q_{+}\) and \(\|u\|_{B}=r\). Then \(r>0\) and, by (10) and Remark 1(a),

$$ \beta^{-2}rt\leq u(t)\leq rt,\qquad \beta^{-2}r\leq u'(t)\leq r, \quad \forall t\in R_{+}. $$
(14)

By conditions (H1), (H2) and (14), we have (for \(k^{*}\), \(h^{*}\), \(a(t)\), \(g(u)\), \(b(t)\), \(G(v,w,z)\), \(g_{r}(t)\) and \(a_{r}^{*}\), \(b^{*}\), see conditions (H1) and (H2))

$$ f\bigl(t,u(t),u'(t),(Tu) (t),(Su) (t)\bigr)\leq a(t)g_{r}(t)+G_{r}b(t),\quad \forall t\in R_{++}, $$
(15)

where

$$G_{r}=\max\bigl\{ g(v,w,z): \beta^{-2}r\leq v\leq r, 0\leq w \leq k^{*}r, 0\leq z\leq h^{*}r\bigr\} , $$

which implies the convergence of the infinite integral

$$ \int_{0}^{\infty}f\bigl(t,u(t),u'(t),(Tu) (t),(Su) (t)\bigr)\, dt $$
(16)

and

$$ \int_{0}^{\infty}f\bigl(t,u(t),u'(t),(Tu) (t),(Su) (t)\bigr)\, dt\leq a_{r}^{*}+G_{r}b^{*}. $$
(17)

On the other hand, by condition (H3) and (14), we have

$$ \bar{I}_{k}\bigl(u'\bigl(t_{k}^{-}\bigr)\bigr) \leq N_{r}\gamma_{k}\quad (k=1,2,3,\ldots), $$
(18)

where

$$N_{r}=\max\bigl\{ F(v): \beta^{-2}r\leq v\leq r\bigr\} , $$

which implies the convergence of the infinite series

$$ \sum_{k=1}^{\infty}\bar{I}_{k} \bigl(u'\bigl(t_{k}^{-}\bigr)\bigr) $$
(19)

and

$$ \sum_{k=1}^{\infty}\bar{I}_{k} \bigl(u'\bigl(t_{k}^{-}\bigr)\bigr)\leq N_{r} \gamma^{*}. $$
(20)

In addition, from (13) we get

$$\begin{aligned} \frac{(Au)(t)}{t} \geq&\frac{1}{\beta-1} \Biggl\{ \int_{0}^{\infty }f \bigl(s,u(s),u'(s),(Tu) (s),(Su) (s)\bigr)\,ds \\ &{}+\sum_{k=1}^{\infty}\bar{I}_{k} \bigl(u'\bigl(t_{k}^{-}\bigr)\bigr) \Biggr\} ,\quad \forall t \in R_{++}. \end{aligned}$$
(21)

Moreover, by condition (H3), we have

$$I_{k}(v)\leq t_{k}\bar{I}_{k}(v), \quad \forall v\in R_{++}\ (k=1,2,3,\ldots), $$

so, (13) gives

$$\begin{aligned} \frac{(Au)(t)}{t} \leq&\frac{1}{\beta-1} \Biggl\{ \int_{0}^{\infty }f \bigl(s,u(s),u'(s),(Tu) (s),(Su) (s)\bigr)\,ds+\sum_{k=1}^{\infty}\bar{I}_{k} \bigl(u'\bigl(t_{k}^{-}\bigr)\bigr) \Biggr\} \\ &{}+\int _{0}^{\infty }f\bigl(s,u(s),u'(s),(Tu) (s),(Su) (s)\bigr)\,ds+\sum_{k=1}^{\infty} \bar{I}_{k}\bigl(u'\bigl(t_{k}^{-}\bigr)\bigr) \\ =&\frac{\beta}{\beta-1} \Biggl\{ \int_{0}^{\infty }f \bigl(s,u(s),u'(s),(Tu) (s),(Su) (s)\bigr)\,ds \\ &{}+\sum _{k=1}^{\infty}\bar{I}_{k}\bigl(u' \bigl(t_{k}^{-}\bigr)\bigr) \Biggr\} , \quad \forall t\in R_{++}. \end{aligned}$$
(22)

On the other hand, by (13), we have

$$\begin{aligned} (Au)'(t) =&\frac{1}{\beta-1} \Biggl\{ \int_{0}^{\infty }f \bigl(s,u(s),u'(s),(Tu) (s),(Su) (s)\bigr)\,ds+\sum _{k=1}^{\infty}\bar{I}_{k}\bigl(u' \bigl(t_{k}^{-}\bigr)\bigr) \Biggr\} \\ &{}+\int_{0}^{t}f\bigl(s,u(s),u'(s),(Tu) (s),(Su) (s)\bigr)\,ds+\sum_{0< t_{k}<t} \bar{I}_{k}\bigl(u'\bigl(t_{k}^{-}\bigr)\bigr),\quad \forall t\in R_{+}, \end{aligned}$$
(23)

so,

$$\begin{aligned} (Au)'(t) \geq&\frac{1}{\beta-1} \Biggl\{ \int_{0}^{\infty }f \bigl(s,u(s),u'(s),(Tu) (s),(Su) (s)\bigr)\,ds \\ &{}+\sum _{k=1}^{\infty}\bar{I}_{k}\bigl(u' \bigl(t_{k}^{-}\bigr)\bigr) \Biggr\} ,\quad \forall t\in R_{+} \end{aligned}$$
(24)

and

$$\begin{aligned} (Au)'(t) \leq&\frac{\beta}{\beta-1} \Biggl\{ \int_{0}^{\infty }f \bigl(s,u(s),u'(s),(Tu) (s),(Su) (s)\bigr)\,ds \\ &{}+\sum _{k=1}^{\infty}\bar{I}_{k}\bigl(u' \bigl(t_{k}^{-}\bigr)\bigr) \Biggr\} ,\quad \forall t\in R_{+}. \end{aligned}$$
(25)

It follows from (13), (21)-(25) that \(Au\in Q\), i.e. \(Au\in \mathit{DPC}^{1}[R_{+},R]\) and

$$\begin{aligned}& \inf_{t\in R_{++}}\frac{(Au)(t)}{t}\geq\beta^{-1}\|Au \|_{S}, \\& \inf_{t\in R_{+}}(Au)'(t)\geq\beta^{-1}\bigl\Vert (Au)'\bigr\Vert _{B}, \end{aligned}$$

and, by (17), (20), (22) and (25),

$$\begin{aligned}& \|Au\|_{S}\leq\frac{\beta}{\beta-1} \bigl(a_{r}^{*}+G_{r}b^{*}+N_{r} \gamma^{*} \bigr), \end{aligned}$$
(26)
$$\begin{aligned}& \bigl\Vert (Au)'\bigr\Vert _{B}\leq \frac{\beta}{\beta-1} \bigl(a_{r}^{*}+G_{r}b^{*}+N_{r} \gamma ^{*} \bigr). \end{aligned}$$
(27)

Thus, we have proved that A maps \(Q_{+}\) into Q.

Now, we are going to show that A is continuous. Let \(u_{n},\bar{u}\in Q_{+}\), \(\|u_{n}-\bar{u}\|_{D}\rightarrow0\) (\(n\rightarrow\infty\)). Write \(\|\bar{u}\|_{D}=2\bar{r}\) (\(\bar{r}>0\)) and we may assume that

$$\bar{r}\leq\|u_{n}\|_{D}\leq3\bar{r} \quad (n=1,2,3, \ldots). $$

So, (9) and (10) imply

$$ \beta^{-2}\bar{r}\leq\frac{u_{n}(t)}{t}\leq3\bar{r},\qquad \beta^{-2}\bar{r}\leq \frac{\bar{u}(t)}{t}\leq3\bar{r},\quad \forall t\in R_{++}\ (n=1,2,3,\ldots) $$
(28)

and

$$ \beta^{-2}\bar{r}\leq u'_{n}(t)\leq3\bar{r}, \qquad \beta^{-2}\bar{r}\leq\bar{u}'(t)\leq3\bar{r},\quad \forall t\in R_{+}\ (n=1,2,3,\ldots). $$
(29)

By (13), we have

$$\begin{aligned}& \frac{|(Au_{n})(t)-(A\bar{u})(t)|}{t} \\& \quad \leq \frac{1}{\beta-1} \Biggl\{ \int_{0}^{\infty} \bigl\vert f\bigl(s,u_{n}(s),u'(s),(Tu_{n}) (s),(Su_{n}) (s)\bigr) \\& \qquad {}-f\bigl(s,\bar{u}(s),\bar{u}'(s),(T\bar{u}) (s),(S\bar{u}) (s) \bigr)\bigr\vert \,ds+\sum_{k=1}^{\infty}\bigl\vert \bar{I}_{k}\bigl(u'_{n} \bigl(t_{k}^{-}\bigr)\bigr)-\bar{I}_{k}\bigl( \bar{u}'\bigl(t_{k}^{-}\bigr)\bigr)\bigr\vert \Biggr\} \\& \qquad {}+\int_{0}^{t}\bigl\vert f \bigl(s,u_{n}(s),u'_{n}(s),(Tu_{n}) (s),(Su_{n}) (s)\bigr)-f\bigl(s,\bar{u}(s),\bar{u}'(s),(T \bar{u}) (s),(T\bar{u}) (s)\bigr)\bigr\vert \,ds \\& \qquad {}+\frac{1}{t}\sum_{0< t_{k}<t}\bigl\vert I_{k}\bigl(u'_{n}\bigl(t_{k}^{-} \bigr)\bigr)-I_{k}\bigl(\bar{u}'\bigl(t_{k}^{-} \bigr)\bigr)\bigr\vert +\sum_{0<t_{k}<t}\bigl\vert \bar{I}_{k}\bigl(u'_{n}\bigl(t_{k}^{-} \bigr)\bigr)-\bar{I}_{k}\bigl(\bar{u}\bigl(t_{k}^{-}\bigr) \bigr)\bigr\vert , \\& \qquad \forall t\in R_{++}\ (n=1,2,3,\ldots). \end{aligned}$$
(30)

When \(0< t\leq t_{1}\), we have

$$\sum_{0< t_{k}<t}\bigl\vert I_{k} \bigl(u'_{n}\bigl(t_{k}^{-}\bigr) \bigr)-I_{k}\bigl(\bar{u}'\bigl(t_{k}^{-}\bigr) \bigr)\bigr\vert =0, $$

so,

$$\begin{aligned}& \sup_{t\in R_{++}}\frac{1}{t}\sum_{0< t_{k}<t} \bigl\vert I_{k}\bigl(u'_{n} \bigl(t_{k}^{-}\bigr)\bigr)-I_{k}\bigl(\bar{u}' \bigl(t_{k}^{-}\bigr)\bigr)\bigr\vert \\& \quad =\sup_{t_{1}<t<\infty}\frac{1}{t}\sum _{0<t_{k}<t}\bigl\vert I_{k}\bigl(u'_{n} \bigl(t_{k}^{-}\bigr)\bigr)-I_{k}\bigl(\bar{u}' \bigl(t_{k}^{-}\bigr)\bigr)\bigr\vert \\& \quad \leq\frac{1}{t_{1}}\sum_{k=1}^{\infty} \bigl\vert I_{k}\bigl(u'_{n} \bigl(t_{k}^{-}\bigr)\bigr)-I_{k}\bigl(\bar{u}' \bigl(t_{k}^{-}\bigr)\bigr)\bigr\vert . \end{aligned}$$
(31)

It follows from (30) and (31) that

$$\begin{aligned} \|Au_{n}-A\bar{u}\|_{S} =&\sup_{t\in R_{++}} \frac{|(Au_{n})(t)-(A\bar{u})(t)|}{t} \\ \leq&\frac{1}{t_{1}}\sum_{k=1}^{\infty }\bigl\vert I_{k}\bigl(u'_{n}\bigl(t_{k}^{-} \bigr)\bigr)-I_{k}\bigl(\bar{u}'\bigl(t_{k}^{-} \bigr)\bigr)\bigr\vert \\ &{}+\frac{\beta}{\beta-1} \Biggl\{ \int_{0}^{\infty }\bigl\vert f\bigl(s,u_{n}(s),u'_{n}(s),(Tu_{n}) (s),(Su_{n}) (s)\bigr) \\ &{}-f\bigl(s,\bar{u}(s),\bar{u}'(s),(T \bar{u}) (s),(S\bar{u}) (s)\bigr)\bigr\vert \,ds \\ &{}+\sum_{k=1}^{\infty}\bigl\vert \bar{I}_{k}\bigl(u'_{n}\bigl(t_{k}^{-} \bigr)\bigr)-\bar{I}_{k}\bigl(\bar{u}' \bigl(t_{k}^{-}\bigr)\bigr)\bigr\vert \Biggr\} \quad (n=1,2,3,\ldots). \end{aligned}$$
(32)

It is clear that

$$\begin{aligned} \begin{aligned}[b] &f\bigl(t,u_{n}(t),u'_{n}(t),(Tu_{n}) (t),(Su_{n}) (t)\bigr) \\ &\quad \rightarrow f\bigl(t,\bar{u}(t), \bar{u}'(t),(T\bar{u}) (t),(S\bar{u}) (t)\bigr)\quad \mbox{as }n \rightarrow\infty, \forall t\in R_{++} \end{aligned} \end{aligned}$$
(33)

and, similar to (15) and observing (28), we have

$$\begin{aligned}& \bigl\vert f\bigl(t,u_{n}(t),u'_{n}(t),(Tu_{n}) (t),(Su_{n}) (t)\bigr)-f\bigl(t,\bar{u}(t),\bar{u}'(t),(T \bar{u}) (t),(S\bar{u}) (t)\bigr)\bigr\vert \\& \quad \leq2\bigl[a(t)\bar{g}(t)+\bar{G}b(t)\bigr]=\sigma(t), \quad \forall t\in R_{++}\ (n=1,2,3,\ldots), \end{aligned}$$
(34)

where

$$\begin{aligned}& \bar{g}(t)=\max\bigl\{ g(u): \beta^{-2}\bar{r}t\leq u\leq3\bar{r}t\bigr\} , \\& \bar{G}(t)=\max\bigl\{ g(v,w,z): \beta^{-2}\bar{r}\leq v\leq3\bar{r}, 0 \leq w\leq3k^{*}\bar{r}, 0\leq z\leq3h^{*}\bar{r}\bigr\} . \end{aligned}$$

It is easy to see that condition (H2) implies

$$ a_{pq}^{*}=\int_{0}^{\infty}a(t)g_{pq}(t) \, dt< \infty $$
(35)

for any \(q>p>0\), where

$$ g_{pq}(t)=\max\bigl\{ g(u): \beta^{-2}pt\leq u\leq qt \bigr\} . $$
(36)

So,

$$\int_{0}^{\infty}a(t)\bar{g}(t)\, dt< \infty, $$

and therefore,

$$ \int_{0}^{\infty}\sigma(t)\, dt< \infty. $$
(37)

It follows from (33), (34), (37) and the dominated convergence theorem that

$$\begin{aligned}& \lim_{n\rightarrow\infty}\int_{0}^{\infty }\bigl\vert f\bigl(t,u_{n}(t),u'_{n}(t),(Tu_{n}) (t),(Su_{n}) (t)\bigr)-f\bigl(t,\bar{u}(t),\bar{u}'(t),(T \bar{u}) (t),(S\bar{u}) (t)\bigr)\bigr\vert \, dt \\& \quad =0. \end{aligned}$$
(38)

On the other hand, similar to (18) and observing (29), we have

$$ \bar{I}_{k}\bigl(u'_{n}\bigl(t_{k}^{-} \bigr)\bigr)\leq\bar{N}_{r}\gamma_{k} ,\qquad \bar{I}_{k}\bigl(\bar{u}'\bigl(t_{k}^{-}\bigr) \bigr)\leq\bar{N}_{r}\gamma_{k} \quad (k,n=1,2,3,\ldots), $$
(39)

where

$$\bar{N}_{r}=\max\bigl\{ F(v): \beta^{-2}\bar{r}\leq v\leq3 \bar{r}\bigr\} . $$

For any given \(\epsilon>0\), by (39) and condition (H3), we can choose a positive integer \(k_{0}\) such that

$$\sum_{k=k_{0}+1}^{\infty}t_{k} \bar{I}_{k}\bigl(u'_{n}\bigl(t_{k}^{-} \bigr)\bigr)< \epsilon\quad (n=1,2,3,\ldots) $$

and

$$\sum_{k=k_{0}+1}^{\infty}t_{k} \bar{I}_{k}\bigl(\bar{u}'\bigl(t_{k}^{-}\bigr) \bigr)< \epsilon, $$

so,

$$\begin{aligned}& \sum_{k=k_{0}+1}^{\infty}I_{k} \bigl(u'_{n}\bigl(t_{k}^{-}\bigr)\bigr)< \epsilon \quad (n=1,2,3,\ldots), \end{aligned}$$
(40)
$$\begin{aligned}& \sum_{k=k_{0}+1}^{\infty}I_{k}\bigl( \bar{u}'\bigl(t_{k}^{-}\bigr)\bigr)< \epsilon, \end{aligned}$$
(41)
$$\begin{aligned}& \sum_{k=k_{0}+1}^{\infty}\bar{I}_{k} \bigl(u'_{n}\bigl(t_{k}^{-}\bigr)\bigr)\leq \frac{1}{t_{1}}\sum_{k=k_{0}+1}^{\infty}t_{k} \bar{I}_{k}\bigl(u'_{n}\bigl(t_{k}^{-} \bigr)\bigr)< t_{1}^{-1}\epsilon \end{aligned}$$
(42)

and

$$ \sum_{k=k_{0}+1}^{\infty}\bar{I}_{k}\bigl( \bar{u}'\bigl(t_{k}^{-}\bigr)\bigr)\leq\frac{1}{t_{1}} \sum_{k=k_{0}+1}^{\infty}t_{k} \bar{I}_{k}\bigl(\bar{u}'\bigl(t_{k}^{-}\bigr) \bigr)< t_{1}^{-1}\epsilon. $$
(43)

It is clear that

$$I_{k}\bigl(u'_{n}\bigl(t_{k}^{-} \bigr)\bigr)\rightarrow I_{k}\bigl(\bar{u}' \bigl(t_{k}^{-}\bigr)\bigr)\quad \mbox{as }n\rightarrow\infty\ (k=1,2,3, \ldots) $$

and

$$\bar{I}_{k}\bigl(u'_{n}\bigl(t_{k}^{-} \bigr)\bigr)\rightarrow\bar{I}_{k}\bigl(\bar{u}' \bigl(t_{k}^{-}\bigr)\bigr) \quad \mbox{as } n\rightarrow\infty\ (k=1,2,3,\ldots), $$

so, we can choose a positive integer \(n_{0}\) such that

$$ \sum_{k=1}^{k_{0}}\bigl\vert I_{k}\bigl(u'_{n}\bigl(t_{k}^{-} \bigr)\bigr)-I_{k}\bigl(\bar{u}'\bigl(t_{k}^{-} \bigr)\bigr)\bigr\vert < \epsilon,\quad \forall n>n_{0} $$
(44)

and

$$ \sum_{k=1}^{k_{0}}\bigl\vert \bar{I}_{k}\bigl(u'_{n}\bigl(t_{k}^{-} \bigr)\bigr)-\bar{I}_{k}\bigl(\bar{u}' \bigl(t_{k}^{-}\bigr)\bigr)\bigr\vert < \epsilon, \quad \forall n>n_{0}. $$
(45)

From (40)-(45), we get

$$\sum_{k=1}^{\infty}\bigl\vert I_{k}\bigl(u'_{n}\bigl(t_{k}^{-} \bigr)\bigr)-I_{k}\bigl(\bar{u}'\bigl(t_{k}^{-} \bigr)\bigr)\bigr\vert < 3\epsilon,\quad \forall n>n_{0} $$

and

$$\sum_{k=1}^{\infty}\bigl\vert \bar{I}_{k}\bigl(u'_{n}\bigl(t_{k}^{-} \bigr)\bigr)-\bar{I}_{k}\bigl(\bar{u}' \bigl(t_{k}^{-}\bigr)\bigr)\bigr\vert < \bigl(1+2t_{1}^{-1} \bigr)\epsilon,\quad \forall n>n_{0}, $$

hence

$$ \lim_{n\rightarrow\infty}\sum_{k=1}^{\infty } \bigl\vert I_{k}\bigl(u'_{n} \bigl(t_{k}^{-}\bigr)\bigr)-I_{k}\bigl(\bar{u}' \bigl(t_{k}^{-}\bigr)\bigr)\bigr\vert =0 $$
(46)

and

$$ \lim_{n\rightarrow\infty}\sum_{k=1}^{\infty} \bigl\vert \bar{I}_{k}\bigl(u'_{n} \bigl(t_{k}^{-}\bigr)\bigr)-\bar{I}_{k}\bigl( \bar{u}'\bigl(t_{k}^{-}\bigr)\bigr)\bigr\vert =0. $$
(47)

It follows from (32), (38), (46) and (47) that

$$ \lim_{n\rightarrow\infty}\|Au_{n}-A\bar{u}\|_{S}=0. $$
(48)

On the other hand, from (23) it is easy to get

$$\begin{aligned} \bigl\Vert (Au_{n})'-(A\bar{u})'\bigr\Vert _{B} \leq&\frac{\beta}{\beta-1} \Biggl\{ \int_{0}^{\infty} \bigl\vert f\bigl(s,u_{n}(s),u'_{n}(s),(Tu_{n}) (s),(Su_{n}) (s)\bigr) \\ &{}-f\bigl(s,\bar{u}(s),\bar{u}'(s),(T\bar{u}) (s),(S\bar{u}) (s) \bigr)\bigr\vert \,ds \\ &{}+\sum_{k=1}^{\infty}\bigl\vert \bar{I}_{k}\bigl(u'_{n} \bigl(t_{k}^{-}\bigr)\bigr)-\bar{I}_{k}\bigl( \bar{u}'\bigl(t_{k}^{-}\bigr)\bigr)\bigr\vert \Biggr\} . \end{aligned}$$
(49)

So, (49), (38) and (47) imply

$$ \lim_{n\rightarrow\infty}\bigl\Vert (Au_{n})'-(A \bar{u})'\bigr\Vert _{B}=0. $$
(50)

It follows from (48) and (50) that \(\|Au_{n}-A\bar{u}\|_{D}\rightarrow0\) as \(n\rightarrow\infty\), and the continuity of A is proved.

Finally, we prove that \(A(Q_{pq})\) is relatively compact, where \(q>p>0\) are arbitrarily given. Let \(\bar{u}_{n}\in Q_{pq}\) (\(n=1,2,3,\ldots\)). Then, by (10),

$$ \beta^{-2}pt\leq\bar{u}_{n}(t)\leq qt,\qquad \beta^{-2}p \leq\bar{u}'_{n}(t)\leq q, \quad \forall t\in R_{+}\ (n=1,2,3,\ldots). $$
(51)

Similar to (15), (18), (26) and observing (51), we have

$$\begin{aligned}& f\bigl(t,\bar{u}_{n}(t),\bar{u}'_{n}(t),(T \bar{u}_{n}) (t),(S\bar{u}_{n}) (t)\bigr) \\& \quad \leq a(t)g_{pq}(t)+G_{pq}b(t), \quad \forall t\in R_{++} \ (n=1,2,3,\ldots), \end{aligned}$$
(52)
$$\begin{aligned}& \bar{I}_{k}\bigl(\bar{u}'_{n} \bigl(t_{k}^{-}\bigr)\bigr)\leq N_{pq}\gamma_{k} \quad (k,n=1,2,3,\ldots) \end{aligned}$$
(53)

and

$$ \|A\bar{u}_{n}\|_{S}\leq\frac{\beta}{\beta-1} \bigl(a_{pq}^{*}+G_{pq}b^{*}+N_{pq}\gamma^{*} \bigr)\quad (n=1,2,3,\ldots), $$
(54)

where \(g_{pq}(t)\) and \(a_{pq}^{*}\) are defined by (36) and (35), respectively, and

$$\begin{aligned} \begin{aligned} &G_{pq}=\max\bigl\{ g(v,w,z): \beta^{-2}p\leq v\leq q, 0\leq w \leq k^{*}q, 0\leq z\leq h^{*}q\bigr\} , \\ &N_{pq}=\max\bigl\{ F(v): \beta^{-2}p\leq v\leq q\bigr\} . \end{aligned} \end{aligned}$$

From (54) we see that functions \(\{(A\bar{u}_{n})(t)\}\) (\(n=1,2,3,\ldots\)) are uniformly bounded on \([0,r]\) for any \(r>0\). On the other hand, by (13) and (52)-(54), we have

$$\begin{aligned} 0 \leq&(A\bar{u}_{n}) \bigl(t'\bigr)-(A \bar{u}_{n}) (t) \\ =&\frac{t'-t}{\beta-1} \Biggl\{ \int_{0}^{\infty}f \bigl(s,\bar{u}_{n}(s),\bar{u}'_{n}(s),(T \bar{u}_{n}) (s),(S\bar{u}_{n}) (s)\bigr)\,ds+\sum_{k=1}^{\infty}\bar{I}_{k} \bigl(\bar{u}'_{n}\bigl(t_{k}^{-}\bigr)\bigr) \Biggr\} \\ &{}+\bigl(t'-t\bigr)\int_{0}^{t}f \bigl(s,\bar{u}_{n}(s),\bar{u}'_{n}(s),(T \bar{u}_{n}) (s),(S\bar{u}_{n}) (s)\bigr)\,ds \\ &{}+\int_{t}^{t'}\bigl(t'-s\bigr)f \bigl(s,\bar{u}_{n}(s),\bar{u}'_{n}(s),(T \bar{u}_{n}) (s),(S\bar{u}_{n}) (s)\bigr)\,ds \\ &{}+\bigl(t'-t\bigr)\sum_{0< t_{k}<t} \bar{I}_{k}\bigl(\bar{u}'_{n} \bigl(t_{k}^{-}\bigr)\bigr) \\ \leq&\frac{t'-t}{\beta-1} \bigl(a_{pq}^{*}+G_{pq}b^{*}+N_{pq} \gamma^{*} \bigr)+\bigl(t'-t\bigr) \bigl(a_{pq}^{*}+G_{pq}b^{*} \bigr) \\ &{}+(t_{k}-t_{k-1})\int_{t}^{t'} \bigl[a(s)g_{pq}(s)+G_{pq}b(s)\bigr]\,ds+\bigl(t'-t \bigr)N_{pq}\gamma ^{*}, \\ &\forall t,t'\in J_{k}, t'>t\ (k,n=1,2,3,\ldots), \end{aligned}$$

which implies that functions \(\{w_{n}(t)\}\) (\(n=1,2,3,\ldots\)) defined by (for any fixed k)

$$w_{n}(t)= \left \{ \begin{array}{l@{\quad}l} (A\bar{u}_{n})(t),& \forall t\in J_{k}=(t_{k-1},t_{k}], \\ (A\bar{u}_{n})(t_{k-1}^{+}),& \forall t=t_{k-1} \end{array} \right .\quad (n=1,2,3,\ldots) $$

(\((A\bar{u}_{n})(t_{k-1}^{+})\) denotes the right limit of \((A\bar{u}_{n})(t)\) at \(t=t_{k-1}\)) are equicontinuous on \(\bar{J}_{k}=[t_{k-1},t_{k}]\). Consequently, by the Ascoli-Arzela theorem, \(\{w_{n}(t)\}\) has a subsequence which is convergent uniformly on \(\bar{J}_{k}\). So, functions \(\{A\bar{u}_{n}(t)\}\) (\(n=1,2,3,\ldots\)) have a subsequence which is convergent uniformly on \(J_{k}\). Now, by the diagonal method, we can choose a subsequence \(\{(A\bar{u}_{n_{i}})(t)\}\) (\(i=1,2,3,\ldots\)) of \(\{ (A\bar{u}_{n})(t)\}\) (\(n=1,2,3,\ldots\)) such that \(\{(A\bar{u}_{n_{i}})(t)\}\) (\(i=1,2,3,\ldots\)) is convergent uniformly on each \(J_{k}\) (\(k=1,2,3,\ldots\)). Let

$$ \lim_{i\rightarrow\infty}(A\bar{u}_{n_{i}}) (t)=\bar{w}(t),\quad \forall t\in R_{+}. $$
(55)

Similarly, we can discuss \(\{(A\bar{u}_{n})'(t)\}\) (\(n=1,2,3,\ldots\)). Similar to (27) and by (23), we have

$$ \bigl\Vert (A\bar{u}_{n})'\bigr\Vert _{B} \leq\frac{\beta}{\beta-1} \bigl(a_{pq}^{*}+G_{pq}b^{*}+N_{pq} \gamma^{*} \bigr)\quad (n=1,2,3,\ldots) $$
(56)

and

$$\begin{aligned} 0 \leq&(A\bar{u}_{n})'\bigl(t'\bigr)-(A \bar{u}_{n})'(t)=\int_{t}^{t'}f \bigl(s,\bar{u}_{n}(s),\bar{u}'_{n}(s),(T \bar{u}_{n}) (s),(S\bar{u}_{n}) (s)\bigr)\,ds \\ \leq&\int_{t}^{t'}\bigl[a(s)g_{pq}(s)+G_{pq}b(s) \bigr]\,ds,\quad \forall t,t'\in J_{k}, t'>t\ (n=1,2,3,\ldots), \end{aligned}$$

and by a similar method, we can prove that \(\{(A\bar{u}_{n_{i}})'(t)\}\) (\(n=1,2,3,\ldots\)) has a subsequence which is convergent uniformly on each \(J_{k}\) (\(k-1,2,3,\ldots\)). For the sake of simplicity of notation, we may assume that \(\{(A\bar{u}_{n_{i}})'(t)\}\) (\(i=1,2,3,\ldots\)) itself converges uniformly on each \(J_{k}\) (\(k=1,2,3,\ldots\)). Let

$$ \lim_{i\rightarrow\infty}(A\bar{u}_{n_{i}})'(t)=y(t). $$
(57)

By (55), (57) and the uniformity of convergence, we have

$$ \bar{w}'(t)=y(t),\quad \forall t\in R_{+}, $$
(58)

and so, \(\bar{w}\in \mathit{PC}^{1}[R_{+},R]\). From (54) and (56), we get

$$\|\bar{w}\|_{S}\leq\frac{\beta}{\beta-1} \bigl(a_{pq}^{*}+G_{pq}b^{*}+N_{pq} \gamma^{*} \bigr) $$

and

$$\bigl\Vert \bar{w}'\bigr\Vert _{B}\leq \frac{\beta}{\beta-1} \bigl(a_{pq}^{*}+G_{pq}b^{*}+N_{pq} \gamma^{*} \bigr). $$

Consequently, \(\bar{w}\in \mathit{DPC}^{1}[R_{+},R]\) and

$$\|\bar{w}\|_{D}\leq\frac{\beta}{\beta-1} \bigl(a_{pq}^{*}+G_{pq}b^{*}+N_{pq} \gamma^{*} \bigr). $$

Let \(\epsilon>0\) be arbitrarily given. Choose a sufficiently large positive number η such that

$$ \int_{\eta}^{\infty}a(t)g_{pq}(t)\, dt+G_{pq}\int_{\eta}^{\infty }b(t)\, dt+N_{pq}\sum_{t_{k}\geq\eta}\gamma_{k}< \epsilon. $$
(59)

For any \(\eta< t<\infty\), we have, by (23), (52) and (53),

$$\begin{aligned} 0 \leq&(A\bar{u}_{n_{i}})'(t)-(A\bar{u}_{n_{i}})'( \eta) \\ =&\int_{\eta}^{t}f\bigl(s,\bar{u}_{n_{i}}(s), \bar{u}'_{n_{i}}(s),(T\bar{u}_{n_{i}}) (s),(S \bar{u}_{n_{i}}) (s)\bigr)\,ds+\sum_{\eta\leq t_{k}< t} \bar{I}_{k}\bigl(\bar{u}'_{n_{i}} \bigl(t_{k}^{-}\bigr)\bigr) \\ \leq&\int_{\eta}^{t}a(s)g_{pq}(s) \,ds+G_{pq}\int_{\eta}^{t}b(s) \,ds+N_{pq}\sum_{\eta\leq t_{k}<t}\gamma_{k} \quad (i=1,2,3,\ldots), \end{aligned}$$

which implies by virtue of (59) that

$$ 0\leq(A\bar{u}_{n_{i}})'(t)-(A\bar{u}_{n_{i}})'( \eta)< \epsilon,\quad \forall t>\eta\ (i=1,2,3,\ldots). $$
(60)

Letting \(i\rightarrow\infty\) in (60) and observing (57) and (58), we get

$$ 0\leq\bar{w}'(t)-\bar{w}'(\eta)\leq\epsilon, \quad \forall t>\eta. $$
(61)

On the other hand, since \(\{(A\bar{u}_{n_{i}})'(t)\}\) converges uniformly to \(\bar{w}'(t)\) on \([0,\eta]\) as \(i\rightarrow\infty\), there exists a positive integer \(i_{0}\) such that

$$ \bigl\vert (A\bar{u}_{n_{i}})'(t)-\bar{w}'(t) \bigr\vert < \epsilon,\quad \forall t\in[0,\eta], i>i_{0}. $$
(62)

It follows from (60)-(62) that

$$\begin{aligned} \bigl\vert (A\bar{u}_{n_{i}})'(t)-\bar{w}'(t) \bigr\vert \leq&\bigl\vert (A\bar{u}_{n_{i}})'(t)-(A \bar{u}_{n_{i}})'(\eta)\bigr\vert +\bigl\vert (A \bar{u}_{n_{i}})'(\eta)-\bar{w}'(\eta)\bigr\vert \\ &{}+\bigl\vert \bar{w}'(\eta)-\bar{w}'(t)\bigr\vert < 3\epsilon, \quad \forall t>\eta, i>i_{0}. \end{aligned}$$
(63)

By (62) and (63), we have

$$\bigl\Vert (A\bar{u}_{n_{i}})'-\bar{w}'\bigr\Vert _{B}\leq3\epsilon,\quad \forall i>i_{0}, $$

hence

$$ \lim_{i\rightarrow\infty}\bigl\Vert (A\bar{u}_{n_{i}})'- \bar{w}'\bigr\Vert _{B}=0. $$
(64)

It is clear that (13) implies

$$ (A\bar{u}_{n_{i}}) \bigl(t_{k}^{+}\bigr)-(A\bar{u}_{n_{i}}) \bigl(t_{k}^{-}\bigr)=I_{k}\bigl(\bar{u}'_{n_{i}} \bigl(t_{k}^{-}\bigr)\bigr)\quad (k,i=1,2,3,\ldots). $$
(65)

By virtue of the uniformity of convergence of \(\{(A\bar{u}_{n_{i}})(t)\}\), we see that

$$\lim_{i\rightarrow\infty}(A\bar{u}_{n_{i}}) \bigl(t_{k}^{-} \bigr)=\bar{w}\bigl(t_{k}^{-}\bigr), \qquad \lim_{i\rightarrow\infty}(A \bar{u}_{n_{i}}) \bigl(t_{k}^{+}\bigr)=\bar{w} \bigl(t_{k}^{+}\bigr)\quad (k=1,2,3,\ldots), $$

so, (65) implies that

$$\lim_{i\rightarrow\infty}I_{k}\bigl(\bar{u}'_{n_{i}} \bigl(t_{k}^{-}\bigr)\bigr)\quad (k=1,2,3,\ldots) $$

exist and

$$\bar{w}\bigl(t_{k}^{+}\bigr)-\bar{w}\bigl(t_{k}^{-}\bigr)=\lim _{i\rightarrow\infty}I_{k}\bigl(\bar{u}'_{n_{i}} \bigl(t_{k}^{-}\bigr)\bigr)\quad (k=1,2,3,\ldots). $$

Let

$$\lim_{i\rightarrow\infty}I_{k}\bigl(\bar{u}'_{n_{i}} \bigl(t_{k}^{-}\bigr)\bigr)=\alpha_{k}\quad (k=1,2,3,\ldots). $$

Then \(\alpha_{k}\geq0\) (\(k=1,2,3,\ldots\)) and

$$ \bar{w}\bigl(t_{k}^{+}\bigr)-\bar{w}\bigl(t_{k}^{-}\bigr)= \alpha_{k}\quad (k=1,2,3,\ldots). $$
(66)

By (53) and condition (H3), we have

$$ I_{k}\bigl(\bar{u}'_{n_{i}}\bigl(t_{k}^{-} \bigr)\bigr)\leq N_{pq}t_{k}\gamma_{k}\quad (k,i=1,2,3,\ldots), $$
(67)

so,

$$ \alpha_{k}\leq N_{pq}t_{k}\gamma_{k} \quad (k=1,2,3,\ldots). $$
(68)

For any given \(\epsilon>0\), choose a sufficiently large positive integer \(k_{0}\) such that

$$ N_{pq}\sum_{k=k_{0}+1}^{\infty}t_{k} \gamma_{k}< \epsilon, $$
(69)

and then, choose another sufficiently large integer \(i_{1}\) such that

$$ \bigl\vert I_{k}\bigl(\bar{u}'_{n_{i}} \bigl(t_{k}^{-}\bigr)\bigr)-\alpha_{k}\bigr\vert < \frac{\epsilon}{k_{0}},\quad \forall i>i_{1}\ (k=1,2,\ldots,k_{0}). $$
(70)

It follows from (67)-(70) that

$$\begin{aligned} \sum_{k=1}^{\infty}\bigl|I_{k}\bigl( \bar{u}'_{n_{i}}\bigl(t_{k}^{-}\bigr)\bigr)- \alpha_{k}\bigr| \leq&\sum_{k=1}^{k_{0}}\bigl|I_{k} \bigl(\bar{u}'_{n_{i}}\bigl(t_{k}^{-}\bigr)\bigr)- \alpha_{k}\bigr| \\ &{}+\sum_{k=k_{0}+1}^{\infty}I_{k}\bigl( \bar{u}'_{n_{i}}\bigl(t_{k}^{-}\bigr)\bigr)+\sum _{k=k_{0}+1}^{\infty}\alpha_{k}< 3\epsilon, \quad \forall i>i_{1}, \end{aligned}$$

hence

$$ \lim_{i\rightarrow\infty}\sum_{k=1}^{\infty} \bigl\vert I_{k}\bigl(\bar{u}'_{n_{i}} \bigl(t_{k}^{-}\bigr)\bigr)-\alpha_{k}\bigr\vert =0. $$
(71)

By formula (11) and (65), (66), we have

$$(A\bar{u}_{n_{i}}) (t)=\int_{0}^{t}(A \bar{u}_{n_{i}})'(s)\,ds+\sum_{0< t_{k}<t}I_{k} \bigl(\bar{u}'_{n_{i}}\bigl(t_{k}^{-}\bigr)\bigr), \quad \forall t\in R_{+} \ (i=1,2,3,\ldots) $$

and

$$\bar{w}(t)=\int_{0}^{t}\bar{w}'(s) \,ds+\sum_{0< t_{k}<t}\alpha_{k},\quad \forall t \in R_{+}, $$

which imply

$$\begin{aligned} \bigl\vert (A\bar{u}_{n_{i}}) (t)-\bar{w}(t)\bigr\vert \leq& t\bigl\Vert (A\bar{u}_{n_{i}})'-\bar{w}'\bigr\Vert _{B} \\ &{}+\sum_{0< t_{k}<t}\bigl\vert I_{k}\bigl( \bar{u}'_{n_{i}}\bigl(t_{k}^{-}\bigr)\bigr)- \alpha_{k}\bigr\vert ,\quad \forall t\in R_{+}\ (i=1,2,3,\ldots). \end{aligned}$$
(72)

Since

$$\sum_{0< t_{k}<t}\bigl\vert I_{k}\bigl( \bar{u}'_{n_{i}}\bigl(t_{k}^{-}\bigr)\bigr)- \alpha_{k}\bigr\vert =0,\quad \forall 0<t\leq t_{1}, $$

(72) implies

$$ \Vert A\bar{u}_{n_{i}}-\bar{w}\Vert _{S}\leq\bigl\Vert (A\bar{u}_{n_{i}})'-\bar{w}'\bigr\Vert _{B}+t_{1}^{-1}\sum_{k=1}^{\infty} \bigl\vert I_{k}\bigl(\bar{u}'_{n_{i}} \bigl(t_{k}^{-}\bigr)\bigr)-\alpha_{k} \bigr\vert \quad (i=1,2,3,\ldots). $$
(73)

By (64), (71) and (73), we have

$$ \lim_{i\rightarrow\infty}\|A\bar{u}_{n_{i}}-\bar{w} \|_{S}=0. $$
(74)

It follows from (64) and (74) that \(\|A\bar{u}_{n_{i}}-\bar{w}\|_{D}\rightarrow0\) as \(i\rightarrow\infty\), and the relative compactness of \(A(Q_{pq})\) is proved. □

Lemma 3

Let conditions (H1)-(H3) be satisfied. Then \(u\in Q_{+}\cap C^{2}[R'_{++},R]\) is a positive solution of IBVP (1) if and only if \(u\in Q_{+}\) is a solution of the following impulsive integral equation:

$$\begin{aligned} u(t) =&\frac{t}{\beta-1} \Biggl\{ \int_{0}^{\infty }f \bigl(s,u(s),u'(s),(Tu) (s),(Su) (s)\bigr)\,ds+\sum _{k=1}^{\infty}\bar{I}_{k}\bigl(u' \bigl(t_{k}^{-}\bigr)\bigr) \Biggr\} \\ &{}+\int_{0}^{t}(t-s)f\bigl(s,u(s),u'(s),(Tu) (s),(Su) (s)\bigr)\,ds \\ &{}+\sum_{0< t_{k}<t} \bigl\{ I_{k}\bigl(u'\bigl(t_{k}^{-}\bigr) \bigr)+(t-t_{k})\bar{I}_{k}\bigl(u' \bigl(t_{k}^{-}\bigr)\bigr) \bigr\} , \quad \forall t\in R_{+}, \end{aligned}$$
(75)

i.e. u is a fixed point of operator A defined by (13).

Proof

If \(u\in Q_{+}\cap C^{2}[R'_{++},R]\) is a positive solution of IBVP (1), then, by (1) and formula (12), we have

$$\begin{aligned} u(t) =&tu'(0)+\int_{0}^{t}(t-s)f \bigl(s,u(s),u'(s),(Tu) (s),(Su) (s)\bigr)\,ds \\ &{}+\sum_{0< t_{k}<t} \bigl\{ I_{k} \bigl(u'\bigl(t_{k}^{-}\bigr)\bigr)+(t-t_{k}) \bar{I}_{k}\bigl(u'\bigl(t_{k}^{-}\bigr)\bigr) \bigr\} ,\quad \forall t\in R_{+}. \end{aligned}$$
(76)

Differentiation of (76) gives

$$ u'(t)=u'(0)+\int_{0}^{t}f \bigl(s,u(s),u'(s),(Tu) (s),(Su) (s)\bigr)\,ds+\sum _{0< t_{k}<t}\bar{I}_{k}\bigl(u' \bigl(t_{k}^{-}\bigr)\bigr), \quad \forall t\in R_{+}. $$
(77)

Under conditions (H1)-(H3), we have shown in the proof of Lemma 2 that the infinite integral (15) and the infinite series (19) are convergent. So, by taking limits as \(t\rightarrow\infty\) in both sides of (77) and using the relation \(u'(\infty)=\beta u'(0)\), we get

$$ u'(0)=\frac{1}{\beta-1} \Biggl\{ \int_{0}^{\infty }f \bigl(s,u(s),u'(s),(Tu) (s),(Su) (s)\bigr)\,ds+\sum _{k=1}^{\infty}\bar{I}_{k}\bigl(u' \bigl(t_{k}^{-}\bigr)\bigr) \Biggr\} . $$
(78)

Now, substituting (78) into (76), we see that \(u(t)\) satisfies equation (75).

Conversely, if \(u\in Q_{+}\) is a solution of equation (75), then direct differentiation of (75) twice gives

$$\begin{aligned} \begin{aligned}[b] u'(t)={}&\frac{1}{\beta-1} \Biggl\{ \int_{0}^{\infty }f \bigl(s,u(s),u'(s),(Tu) (s),(Su) (s)\bigr)\,ds+\sum _{k=1}^{\infty}\bar{I}_{k}\bigl(u' \bigl(t_{k}^{-}\bigr)\bigr) \Biggr\} \\ &{}+\int_{0}^{t}f\bigl(s,u(s),u'(s),(Tu) (s),(Su) (s)\bigr)\,ds+\sum_{0< t_{k}<t} \bar{I}_{k}\bigl(u'\bigl(t_{k}^{-}\bigr)\bigr), \quad \forall t\in R_{+} \end{aligned} \end{aligned}$$
(79)

and

$$u''(t)=f\bigl(t,u(t),u'(t),(Tu) (t),(Su) (t)\bigr),\quad \forall t\in R'_{++}. $$

So, \(u\in C^{2}[R'_{++},R]\) and

$$\Delta u |_{t=t_{k}}=I_{k}\bigl(u' \bigl(t_{k}^{-}\bigr)\bigr),\qquad \Delta u' |_{t=t_{k}}=\bar{I}_{k}\bigl(u'\bigl(t_{k}^{-} \bigr)\bigr)\quad (k=1,2,3,\ldots). $$

Moreover, taking limits as \(t\rightarrow\infty\) in (79), we see that \(u'(\infty)\) exists and

$$u'(\infty)=\frac{\beta}{\beta-1} \Biggl\{ \int_{0}^{\infty }f \bigl(s,u(s),u'(s),(Tu) (s),(Su) (s)\bigr)\,ds+\sum _{k=1}^{\infty}\bar{I}_{k}\bigl(u' \bigl(t_{k}^{-}\bigr)\bigr) \Biggr\} =\beta u'(0). $$

Hence, \(u(t)\) is a positive solution of IBVP (1). □

Lemma 4

(Fixed point theorem of cone expansion and compression with norm type, see Corollary 1 in [26] or Theorem 3 in [27] or Theorem 2.3.4 in [28], see also [29, 30])

Let P be a cone in a real Banach space E and \(\Omega_{1}\), \(\Omega_{2}\) be two bounded open sets in E such that \(\theta\in\Omega_{1}\), \(\bar{\Omega}_{1}\subset \Omega_{2}\), where θ denotes the zero element of E and \(\bar{\Omega}_{i} \) denotes the closure of \(\Omega_{i}\) (\(i=1,2\)). Let the operator \(A: P\cap(\bar{\Omega}_{2}\backslash\Omega_{1})\rightarrow P\) be completely continuous (i.e. continuous and compact). Suppose that one of the following two conditions is satisfied:

  1. (a)

    \(\|Ax\|\leq\|x\|\), \(\forall x\in P\cap\partial\Omega_{1} \); \(\|Ax\|\geq\|x\|\), \(\forall x\in P\cap\partial\Omega_{2}\), where \(\partial\Omega_{i} \) denotes the boundary of \(\Omega_{i}\) (\(i=1,2\)).

  2. (b)

    \(\|Ax\|\geq\|x\|\), \(\forall x\in P\cap\partial\Omega_{1} \); \(\|Ax\|\leq\|x\|\), \(\forall x\in P\cap\partial\Omega_{2}\).

Then A has at least one fixed point in \(P\cap(\bar{\Omega} _{2}\backslash\Omega_{1})\).

3 Main theorem

Theorem

Let conditions (H1)-(H5) be satisfied. Assume that there exists \(r>0 \) such that

$$ \frac{\beta}{\beta-1}\bigl(a_{r}^{*}+G_{r}b^{*}+N_{r} \gamma^{*}\bigr)< r , $$
(80)

where \(a_{r}^{*}\), \(b^{*}\) and \(\gamma^{*}\) are defined in conditions (H1) and (H2), and, \(G_{r}\) and \(N_{r}\) are defined by two equalities below (15) and (18), respectively. Then IBVP (1) has at least two positive solutions \(u^{*},u^{**}\in Q_{+}\cap C^{2}[R'_{++},R]\) such that

$$\begin{aligned}& 0< \inf_{t\in R_{++}}\frac{u^{*}(t)}{t}\leq\sup_{t\in R_{++}} \frac{u^{*}(t)}{t}<r, \\& 0<\inf_{t\in R_{+}}\bigl(u^{*}\bigr)'(t)\leq\sup _{t\in R_{+}}\bigl(u^{*}\bigr)'(t)<r, \\& \beta^{-2}r<\inf_{t\in R_{++}}\frac{u^{**}(t)}{t}\leq\sup _{t\in R_{++}}\frac{u^{**}(t)}{t}<\infty \end{aligned}$$

and

$$\beta^{-2}r< \inf_{t\in R_{+}}\bigl(u^{**} \bigr)'(t)\leq\sup_{t\in R_{+}}\bigl(u^{**} \bigr)'(t)<\infty. $$

Proof

By Lemma 2 and Lemma 3, operator A defined by (13) is continuous from \(Q_{+}\) into Q, and we need to prove that A has two fixed points \(u^{*}\) and \(u^{**}\) in \(Q_{+}\) such that \(0<\|u^{*}\|_{D}<r<\|u^{**}\|_{D}\).

By condition (H4), there exists \(r_{1}>0\) such that

$$ f(t,u,v,w,z)\geq\frac{\beta^{2} (\beta-1)}{c^{*}}c(t)v, \quad \forall t,u\in R_{++}, v\geq r_{1}, w,z\in R_{+}. $$
(81)

Choose

$$ r_{2}>\max\bigl\{ \beta^{2} r_{1}, r \bigr\} . $$
(82)

For \(u\in Q\), \(\|u\|_{D}=r_{2}\), we have, by (10) and (82),

$$u'(t)\geq\beta^{-2}r_{2}>r_{1}, \quad \forall t\in R_{+}, $$

so, (23) and (81) imply

$$\begin{aligned} (Au)'(t) \geq&\frac{1}{\beta-1}\int_{0}^{\infty}f \bigl(s,u(s),u'(s),(Tu) (s),(Su) (s)\bigr)\,ds \\ \geq&\frac{\beta^{2} }{c^{*}}\int_{0}^{\infty}c(s)u'(s) \,ds\geq\frac {r_{2}}{c^{*}}\int_{0}^{\infty}c(s) \,ds=r_{2},\quad \forall t\in R_{+}, \end{aligned}$$

and consequently,

$$\bigl\Vert (Au)'\bigr\Vert _{B}\geq r_{2}, $$

hence

$$ \|Au\|_{D}\geq\|u\|_{D},\quad \forall u\in Q, \|u \|_{D}=r_{2}. $$
(83)

By condition (H5), there exists \(r_{3}>0\) such that

$$ f(t,u,v,w,z)\geq\frac{(\beta-1)r}{d^{*}}d(t),\quad \forall t,u\in R_{++}, 0< v<r_{3}, w,z\in R_{+}. $$
(84)

Choose

$$ 0< r_{4}<\min\{r_{3}, r \}. $$
(85)

For \(u\in Q, \|u\|_{D}=r_{4}\), we have, by (10) and (85),

$$r_{3}>r_{4}\geq u'(t)\geq\beta^{-2}r_{4}>0, $$

so, we get, by (23) and (84),

$$\begin{aligned} \begin{aligned} (Au)'(t)&\geq\frac{1}{\beta-1}\int_{0}^{\infty}f \bigl(s,u(s),u'(s),(Tu) (s),(Su) (s)\bigr)\,ds \\ &\geq\frac{r}{d^{*}}\int_{0}^{\infty}d(s) \,ds=r>r_{4},\quad \forall t\in R_{+}, \end{aligned} \end{aligned}$$

hence

$$\bigl\Vert (Au)'\bigr\Vert _{B}>r_{4}, $$

and consequently,

$$ \|Au\|_{D}>\|u\|_{D},\quad \forall u\in Q, \|u \|_{D}=r_{4}. $$
(86)

On the other hand, for \(u\in Q\), \(\|u\|_{D}=r\), (26) and (27) imply

$$ \|Au\|_{D}\leq\frac{\beta}{\beta-1}\bigl(a_{r}^{*}+G_{r}b^{*}+N_{r} \gamma^{*}\bigr). $$
(87)

Thus, from (80) and (87), we get

$$ \|Au\|_{D}< \|u\|_{D},\quad \forall u\in Q, \|u \|_{D}=r. $$
(88)

By (82) and (85) we know \(0< r_{4}<r<r_{2}\), and, by Lemma 2, operator A is completely continuous from \(Q_{r_{4}r_{2}}\) into Q. Hence, (83), (86), (88) and Lemma 4 imply that A has two fixed points \(u^{*}, u^{**}\in Q_{r_{4}r_{2}}\) such that \(r_{4}<\|u^{*}\|_{D}<r<\|u^{**}\|_{D}\leq r_{2}\). The proof is complete. □

Example

Consider the infinite boundary value problem for second order impulsive singular integro-differential equation of mixed type on the half line:

$$ \left \{ \begin{array}{l} u''(t)=\frac{e^{-2t}}{45t^{\frac{1}{3}}} (\frac{1}{[u(t)]^{\frac {1}{3}}}+\frac{1}{u'(t)}+[u'(t)]^{2} )+\frac{e^{-3t}}{40t^{\frac {1}{3}}} \{ (\int_{0}^{t}e^{-(t+2)s}u(s)\,ds )^{2} \\ \hphantom{u''(t)=}{} + (\int_{0}^{\infty}\frac{u(s)\,ds}{(1+t+s)^{3}} )^{3} \},\quad \forall 0< t<{\infty}, t\neq k\ (k=1,2,3,\ldots), \\ \Delta u |_{t=k}=3^{-k-4}\frac{1}{u'(k^{-})+\sqrt{u'(k^{-})}}\quad (k=1,2,3,\ldots), \\ \Delta u' |_{t=k}=k^{-1}3^{-k-4}\frac{1}{\sqrt{u'(k^{-})}}\quad (k=1,2,3,\ldots), \\ u(0)=0,\qquad u'(\infty)=2u'(0). \end{array} \right . $$
(89)

Conclusion

IBVP (89) has at least two positive solutions \(u^{*},u^{**}\in \mathit{PC}^{1}[R_{+},R]\cap C^{2}[R'_{++},R]\) such that

$$\begin{aligned}& 0< \inf_{0<t<{\infty}}\frac{u^{*}(t)}{t}\leq\sup_{0<t<{\infty}} \frac {u^{*}(t)}{t}<1, \\& 0<\inf_{0\leq t<{\infty}}\bigl(u^{*}\bigr)'(t)\leq\sup _{0\leq t<{\infty}}\bigl(u^{*}\bigr)'(t)<1, \\& \frac{1}{4}<\inf_{0<t<{\infty}}\frac{u^{**}(t)}{t}\leq\sup _{0<t<{\infty}}\frac{u^{**}(t)}{t}<{\infty} \end{aligned}$$

and

$$\frac{1}{4}< \inf_{0\leq t<{\infty}}\bigl(u^{**} \bigr)'(t)\leq\sup_{0\leq t<{\infty}}\bigl(u^{**} \bigr)'(t)<{\infty}. $$

Proof

System (89) is an IBVP of form (1). In this situation, \(t_{k}=k\) (\(k=1,2,3,\ldots\)), \(K(t,s)=e^{-(t+2)s}\), \(H(t,s)=(1+t+s)^{-3}\), \(\beta=2\), and

$$\begin{aligned}& f(t,u,v,w,z)=\frac{e^{-2t}}{45t^{\frac{1}{3}}} \biggl(\frac{1}{u^{\frac {1}{3}}}+\frac{1}{v}+v^{2} \biggr)+\frac{e^{-3t}}{40t^{\frac{1}{3}}} \bigl(w^{2}+z^{3} \bigr),\quad \forall t,u,v\in R_{++}, w,z\in R_{+}, \\& I_{k}(v)=3^{-k-4}\frac{1}{v+\sqrt{v}}, \quad \forall v\in R_{++}\ (k=1,2,3,\ldots), \\& \bar{I}_{k}(v)=k^{-1}3^{-k-4}\frac{1}{\sqrt{v}}, \quad \forall v\in R_{++}\ (k=1,2,3,\ldots). \end{aligned}$$

It is clear that (3)-(7) are satisfied, so, (89) is a singular problem. It is easy to see that condition (H1) is satisfied and \(k^{*}\leq1\), \(h^{*}\leq1\). We have

$$f(t,u,v,w,z)\leq\frac{e^{-2t}}{45t^{\frac{1}{3}}}\frac{1}{u^{\frac {1}{3}}}+\frac{e^{-2t}}{t^{\frac{1}{3}}} \biggl\{ \frac{1}{45} \biggl(\frac {1}{v}+v^{2} \biggr)+ \frac{1}{40} \bigl(w^{2}+z^{3} \bigr) \biggr\} , $$

so, condition (H2) is satisfied for

$$a(t)=\frac{e^{-2t}}{45t^{\frac{1}{3}}},\qquad g(u)=\frac{1}{u^{\frac{1}{3}}},\qquad b(t)= \frac{e^{-2t}}{t^{\frac{1}{3}}} $$

and

$$g(v,w,z)=\frac{1}{45} \biggl(\frac{1}{v}+v^{2} \biggr)+ \frac{1}{40} \bigl(w^{2}+z^{3} \bigr) $$

with

$$ \begin{aligned} &g_{r}(t)=\max\biggl\{ u^{-\frac{1}{3}}: \frac{rt}{4}\leq u\leq rt \biggr\} = \biggl(\frac {4}{r} \biggr)^{\frac{1}{3}}t^{-\frac{1}{3}}, \\ &a_{r}^{*}=\int_{0}^{\infty}a(t)g_{r}(t)\, dt= \frac{1}{45} \biggl(\frac{4}{r} \biggr)^{\frac{1}{3}}\int _{0}^{\infty}\frac{e^{-2t}}{t^{\frac {2}{3}}}\, dt< {\infty} \end{aligned} $$
(90)

and

$$ b^{*}=\int_{0}^{\infty}\frac{e^{-2t}}{t^{\frac{1}{3}}}\, dt< { \infty}. $$
(91)

It is obvious that condition (H3) is satisfied for \(\gamma _{k}=k^{-1}3^{-k-4}\) (\(\gamma^{*}=\frac{1}{162}\)) and \(F(v)=v^{-\frac {1}{2}}\). From

$$f(t,u,v,w,z)\geq\frac{e^{-2t}}{45t^{\frac{1}{3}}}v^{2},\quad \forall t,u,v\in R_{++}, w,z\in R_{+} $$

and

$$f(t,u,v,w,z)\geq\frac{e^{-2t}}{45t^{\frac{1}{3}}}\frac{1}{v}, \quad \forall t,u,v\in R_{++}, w,z\in R_{+}, $$

we see that conditions (H4) and (H5) are satisfied for

$$c(t)=\frac{e^{-2t}}{t^{\frac{1}{3}}}\quad \bigl(c^{*}=b^{*}, \mbox{see (91)}\bigr) $$

and

$$d(t)=\frac{e^{-2t}}{t^{\frac{1}{3}}}\quad \bigl(d^{*}=b^{*}\bigr), $$

respectively. Finally, we check that inequality (80) is satisfied for \(r=1\), i.e.

$$ 2\bigl(a_{1}^{*}+G_{1}b^{*}+N_{1}\gamma^{*}\bigr)< 1. $$
(92)

By (90) and (91), we have

$$\begin{aligned} a_{1}^{*} =&\frac{4^{\frac{1}{3}}}{45}\int_{0}^{\infty} \frac{e^{-2t}}{t^{\frac {2}{3}}}\, dt< \frac{4^{\frac{1}{3}}}{45} \biggl(\int_{0}^{1} \frac{dt}{t^{\frac {2}{3}}}+\int_{1}^{\infty}e^{-2t}\, dt \biggr) \\ =&\frac{4^{\frac{1}{3}}}{45} \biggl(3+\frac{1}{2}e^{-2} \biggr)< \frac {1}{45} \biggl(\frac{8}{5} \biggr) \biggl(3+\frac{1}{14} \biggr)=\frac{172}{1\text{,}575} \end{aligned}$$

and

$$b^{*}< \int_{0}^{1}\frac{dt}{t^{\frac{1}{3}}}+\int _{1}^{\infty}e^{-2t}\, dt=\frac {3}{2}+ \frac{1}{2}e^{-2}<\frac{11}{7}. $$

Moreover, it is easy to get

$$G_{1}< \frac{29}{180},\qquad N_{1}=2. $$

Hence

$$2\bigl(a_{1}^{*}+G_{1}b^{*}+N_{1}\gamma^{*}\bigr)< 2 \biggl(\frac{172}{1\text{,}575}+\frac {319}{1\text{,}260}+\frac{1}{81} \biggr)= \frac{21\text{,}247}{28\text{,}350}<1. $$

Consequently, (92) holds, and our conclusion follows from the theorem. □

References

  1. Lakshmikantham, V, Bainov, DD, Simeonov, PS: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)

    Book  MATH  Google Scholar 

  2. Samoilenko, AM, Perestyuk, NA: Impulsive Differential Equations. World Scientific, Singapore (1995)

    MATH  Google Scholar 

  3. Benchohra, M, Henderson, J, Ntouyas, SK: Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation, New York (2006)

    Book  MATH  Google Scholar 

  4. Kaul, S, Lakshmikantham, V, Leela, S: Extremal solutions, comparison principle and stability criteria for impulsive differential equations with variable times. Nonlinear Anal. 22, 1263-1270 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Wei, Z: Extremal solutions of boundary value problems for second order impulsive integrodifferential equations of mixed type. Nonlinear Anal. 28, 1681-1688 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Guo, D: A class of second order impulsive integro-differential equations on unbounded domain in a Banach space. Appl. Math. Comput. 125, 59-77 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Jankowski, T: Existence of solutions for second order impulsive differential equations with deviating arguments. Nonlinear Anal. 67, 1764-1774 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ahmad, B, Nieto, JJ: Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions. Nonlinear Anal. 69, 3291-3298 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Agarwal, RP, O’Regan, D: Multiple nonnegative solutions for second order impulsive differential equations. Appl. Math. Comput. 114, 51-59 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Agarwal, RP, O’Regan, D: A multiplicity result for second order impulsive differential equations via the Leggett Williams fixed point theorem. Appl. Math. Comput. 161, 433-439 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Yan, B: Boundary value problems on the half line with impulses and infinite delay. J. Math. Anal. Appl. 259, 94-114 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kaufmann, ER, Kosmatov, N, Raffoul, YN: A second-order boundary value problem with impulsive effects on an unbounded domain. Nonlinear Anal. 69, 2924-2929 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Guo, D: Positive solutions of an infinite boundary value problem for nth-order nonlinear impulsive singular integro-differential equations in Banach spaces. Nonlinear Anal. 70, 2078-2090 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Guo, D: Multiple positive solutions for first order impulsive singular integro-differential equations on the half line. Acta Math. Sci. Ser. B 32(6), 2176-2190 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Guo, D, Liu, X: Multiple positive solutions of boundary value problems for impulsive differential equations. Nonlinear Anal. 25, 327-337 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Guo, D: Multiple positive solutions of a boundary value problem for nth-order impulsive integro-differential equations in Banach spaces. Nonlinear Anal. 63, 618-641 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Xu, X, Wang, B, O’Regan, D: Multiple solutions for sub-linear impulsive three-point boundary value problems. Appl. Anal. 87, 1053-1066 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jankowski, J: Existence of positive solutions to second order four-point impulsive differential problems with deviating arguments. Comput. Math. Appl. 58, 805-817 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Liu, Y, O’Regan, D: Multiplicity results using bifurcation techniques for a class of boundary value problems of impulsive differential equations. Commun. Nonlinear Sci. Numer. Simul. 16, 1769-1775 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tian, Y, Ge, W: Applications of variational methods to boundary value problem for impulsive differential equations. Proc. Edinb. Math. Soc. 51, 509-527 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nieto, JJ, O’Regan, D: Variational approach to impulsive differential equations. Nonlinear Anal., Real World Appl. 10, 680-690 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zang, Z, Yuan, R: An application of variational methods to Dirichlet boundary value problem with impulses. Nonlinear Anal., Real World Appl. 11, 155-162 (2010)

    Article  MathSciNet  Google Scholar 

  23. Chen, H, Sun, J: An application of variational method to second-order impulsive differential equations on the half line. Appl. Math. Comput. 217, 1863-1869 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Bai, L, Dai, B: Existence and multiplicity of solutions for an impulsive boundary value problem with a parameter via critical point theory. Math. Comput. Model. 53, 1844-1855 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Guo, D: Variational approach to a class of impulsive differential equations. Bound. Value Probl. 2014, 37 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Guo, D: Some fixed point theorems on cone maps. Kexue Tongbao 29, 575-578 (1984)

    MATH  MathSciNet  Google Scholar 

  27. Guo, D: Some fixed point theorems of expansion and compression type with applications. In: Lakshmikantham, V (ed.) Nonlinear Analysis and Applications, pp. 213-221. Dekker, New York (1987)

    Google Scholar 

  28. Guo, D, Lakshmikantham, V: Nonlinear Problems in Abstract Cones. Academic Press, Boston (1988)

    MATH  Google Scholar 

  29. Sun, J: A generalization of Guo’s theorem and applications. J. Math. Anal. Appl. 126, 566-573 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  30. Caponetti, D, Trombetta, A, Trombetta, G: An extension of Guo’s theorem via k-ϕ-contractive retractions. Nonlinear Anal. 64, 1897-1907 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks the reviewers for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dajun Guo.

Additional information

Competing interests

The author declares that they have no competing interests.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, D. Existence of two positive solutions for a class of second order impulsive singular integro-differential equations on the half line. Bound Value Probl 2015, 76 (2015). https://doi.org/10.1186/s13661-015-0337-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-015-0337-1

MSC

Keywords