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Abstract
In this article, we investigate existence and uniqueness of positive solutions to
coupled systems of multi-point boundary value problems for fractional order
differential equations of the form

⎧
⎪⎪⎨

⎪⎪⎩

Dαx(t) = φ(t, x(t), y(t)), t ∈ I = [0, 1],
Dβy(t) =ψ (t, x(t), y(t)), t ∈ I = [0, 1],
x(0) = g(x), x(1) = δx(η), 0 < η < 1,
y(0) = h(y), y(1) = γ y(ξ ), 0 < ξ < 1,

where α,β ∈ (1, 2], D denotes the Caputo fractional derivative, 0 < δ,γ < 1 are
parameters such that δηα < 1, γ ξβ < 1, h,g ∈ C(I,R) are boundary functions and
φ ,ψ : I×R×R →R are continuous. We use the technique of topological degree
theory to obtain sufficient conditions for existence and uniqueness of positive
solutions to the system. Finally, we provide an example to illustrate our main results.
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1 Introduction
Recently much attention has been paid to investigate sufficient conditions for existence
of positive solutions to boundary value problems for fractional order differential equa-
tions, we refer to [–] and the references therein. This is because of many applications
of fractional differential equations in various field of science and technology as in [–].
Existence of solutions to boundary value problems for coupled systems of fractional order
differential equations has also attracted some attentions, we refer to [, –]. In these
papers, classical fixed point theorems such as Banach contraction principle and Schauder
fixed point theorem are used for existence of solutions. The use of these results require
stronger conditions on the nonlinear functions involved which restricts the applicability
to limited classes of problems and very specialized systems of boundary value problems.
In order to enlarge the class of boundary value problems and to impose less restricted
conditions, one needs to search for other sophisticated tools of functional analysis. One
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such tool is topological degree theory. Few results can be found in the literature which
use degree theory arguments for the existence of solutions to boundary value problems
(BVPs) [–]. However, to the best of our knowledge, the existence and uniqueness of
solutions to coupled systems of multi-point boundary value problems for fractional order
differential equations with topological degree theory approach have not been studied pre-
viously. Wang et al. [] studied the existence and uniqueness of solutions via topological
degree method to a class of nonlocal Cauchy problems of the form

{
Dqu(t) = f (t, u(t)), t ∈ I = [, T],
u() + g(u) = u,

where Dq is the Caputo fractional derivative of order q ∈ (, ], u ∈R, and f : I ×R → R is
continuous. The result was extended to the case of a boundary value problem by Chen et
al. [] who studied sufficient conditions for existence results for the following two point
boundary value problem:

{
Dα

+φp(Dβ
+u(t)) = f (t, u(t), Dβ

+u(t)),
Dβ

+u() = Dβ
+u() = ,

where Dα
+ and Dβ

+ are Caputo fractional derivatives,  < α,β ≤ ,  < α + β ≤ . Wang et
al. [] studied the following two point boundary value problem for fractional differential
equations with different boundary conditions:

{
Dα

+φp(Dβ
+u(t)) = f (t, u(t), Dβ

+u(t)),
u() = , Dβ

+u() = Dβ
+u(),

where Dα
+ and Dβ

+ are Caputo fractional derivatives,  < α,β ≤ ,  < α + β ≤ .
Motivated by the work cited above, in this paper, we use a coincidence degree theory ap-

proach for condensing maps to obtain sufficient conditions for the existence and unique-
ness of solutions to more general coupled systems of nonlinear multi-point boundary
value problems. The boundary conditions are also nonlinear. The system is of the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dαx(t) = φ(t, x(t), y(t)), t ∈ I = [, ],
Dβy(t) = ψ(t, x(t), y(t)), t ∈ I = [, ],
x() = g(x), x() = δx(η),  < η < ,
y() = h(y), y() = γ y(ξ ),  < ξ < ,

()

where α,β ∈ (, ], D is used for standard Caputo fractional derivative and  < δ,γ <  such
that δηα < , γ ξβ < , h, g ∈ C(I,R) are boundary functions and φ,ψ : I ×R×R → R are
continuous.

2 Preliminaries
In this section we give some fundamental definitions and results from fractional calculus
and topological degree theory. For further detailed study, we refer to [, , , , ,
].
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Definition . The fractional integral of order ρ ∈ R+ of a function u ∈ L([a, b],R) is
defined as

Iρ
+u(t) =


�(ρ)

∫ t

a
(t – s)ρ–u(s) ds.

Definition . The Caputo fractional order derivative of a function u on the interval [a, b]
is defined by

Dρ
+u(t) =


�(m – ρ)

∫ t

a
(t – s)m–ρ–u(m)(s) ds,

where m = [ρ] +  and [ρ] represents the integer part of ρ .

Lemma . The following result holds for fractional differential equations:

IρDρu(t) = u(t) + d + dt + dt + · · · + dm–tm–

for arbitrary di ∈ R, i = , , , . . . , m – .

The spaces X = C([, ],R), Y = C([, ],R) of all continuous functions from [, ] →
R are Banach spaces under the topological norms ‖x‖ = sup{|x(t)| : t ∈ [, ]} and ‖y‖ =
sup{|y(t)| : t ∈ [, ]}, respectively. The product space X × Y is a Banach space under the
norm ‖(x, y)‖ = ‖x‖+‖y‖. It is also a Banach space under the norm |(x, y)| = max{‖x‖,‖y‖}.

Let S be a family of all bounded sets of P(X × Y ), where X × Y is a Banach space. Then
we recall the following notions [].

Definition . The Kuratowski measure of non-compactness μ : S →R+ is defined as

μ(S) = inf{d >  : S admits a finite cover by sets of diameter ≤ d},

where S ∈ S.

Proposition . The Kuratowski measure μ satisfies the following properties:
(i) μ(S) =  iff S is relatively compact.

(ii) μ is a seminorm, i.e., μ(λS) = |λ|μ(S), λ ∈R and μ(S + S) ≤ μ(S) + μ(S).
(iii) S ⊂ S implies μ(S) ≤ μ(S); μ(S ∪ S) = max{μ(S),μ(S)}.
(iv) μ(conv S) = μ(S).
(v) μ(S̄) = μ(S).

Definition . Let F :  → X be continuous bounded map, where  ⊂ X. Then F is
μ-Lipschitz if there exists K ≥  such that

μ
(
F(S)

) ≤ Kμ(S), ∀S ⊂  bounded.

Further, F will be strict μ-contraction if K < .
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Definition . A function F is μ-condensing if

μ
(
F(S)

)
< μ(S), ∀S ⊂  bounded, with μ(S) > .

In other words, μ(F(S)) ≥ μ(S) implies μ(S) = .

Here, we denote the class of all strict μ-contractions F :  → X by ϑCμ() and denote
the class of all μ-condensing maps F :  → X by Cμ().

Remark  ϑCμ() ⊂ Cμ() and every F ∈ Cμ() is μ-Lipschitz with constant K = .

Moreover, we recall that F :  → X is Lipschitz if there exists K >  such that

∥
∥F(x) – F(y)

∥
∥ ≤ K |x – y|, ∀x, y ∈ ,

and that if K < , then F is a strict contraction. For the following results, we refer to [].

Proposition . If F , G :  → X are μ-Lipschitz with constants K and K ′, respectively,
then F + G :  → X is μ-Lipschitz with constant K + K ′.

Proposition . If F :  → X is compact, then F is μ-Lipschitz with constant K = .

Proposition . If F :  → X is Lipschitz with constant K , then F is μ-Lipschitz with the
same constant K .

The following theorem due to Isaia [] plays an important role for our main result.

Theorem . Let F : X → X be μ-condensing and

� =
{

x ∈ X : ∃λ ∈ [, ] such that x = λFx
}

.

If � is a bounded set in X, so there exists r >  such that � ⊂ Sr(), then the degree

D
(
I – λF , Sr(), 

)
= , ∀λ ∈ [, ].

Consequently, F has at least one fixed point and the set of the fixed points of F lies in Sr().

Now, we list the following hypotheses.

(C) There exist constants Kg , Kh ∈ [, ) such that

∣
∣g(x) – g(x)

∣
∣ ≤ Kg |x – x|,

∣
∣h(y) – h(y)

∣
∣ ≤ Kh|y – y| for x, x, y, y,∈ R.

(C) There exist constants Cg , Ch, Mg , Mh >  such that, for x, y ∈R,

∣
∣g(x)

∣
∣ ≤ Cg |x| + Mg ,

∣
∣h(y)

∣
∣ ≤ Ch|y| + Mh.
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(C) There exist constants ci, di (i = , ) and Mφ , Mψ such that, for x, y ∈R,

∣
∣φ(t, x, y)

∣
∣ ≤ c|x| + c|y| + Mφ ,

∣
∣ψ(t, x, y)

∣
∣ ≤ d|x| + d|y| + Mψ .

(C) There exist constants Lφ , Lψ such that, for x, x, y, y ∈R,

∣
∣φ(t, x, y) – φ(t, x, y)

∣
∣ ≤ Lφ

(|x – x| + |y – y|
)
,

∣
∣ψ(t, x, y) – ψ(t, x, y)

∣
∣ ≤ Lψ

(|x – x| + |y – y|
)
.

3 Main results
In this section, we discuss the existence and uniqueness of solutions to the BVP ().

Lemma . If h : I →R is α times integrable function, then solutions of the BVP

Dαx(t) = h(t), t ∈ I = [, ],

x() = g(x), x() = δx(η),  < η < ,
()

are a solution of the following Fredholm integral equation:

x(t) =
(

 –
t( – δ)
 – δη

)

g(x) +
∫ 


Gα(t, s)h(s) ds, t ∈ [, ], ()

where Gα(t, s) is defined by

Gα(t, s) =


�(α)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(t – s)α– + tδ(η–s)α–

–δη
– t(–s)α–

–δη
,  ≤ s ≤ t ≤ η ≤ ,

(t – s)α– – t(–s)α–

–δη
,  ≤ η ≤ s ≤ t ≤ ,

tδ(η–s)α–

–δη
– t(–s)α–

–δη
,  ≤ t ≤ s ≤ η ≤ ,

– t(–s)α–

–δη
,  ≤ η ≤ t ≤ s ≤ .

()

Proof Applying Iα on Dαx(t) = h(t) and using Lemma ., we have

x(t) = Iαh(t) + c + ct ()

for some c, c ∈ R. The conditions x() = g(x) and x() = δx(η) imply c = g(x) and c =
δ

–δη
Iαh(η) – –δ

–δη
g(x) – 

–δη
Iαh(). Hence, we obtain

x(t) = Iαh(t) + g(x) + t
[

δ

 – δη
Iαh(η) –

 – δ

 – δη
g(x) –


 – δη

Iαh()
]

, ()

which after rearranging can be written as

x(t) =
(

 –
t( – δ)
 – δη

)

g(x) +
∫ 


Gα(t, s)h(s) ds. �
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In view of Lemma ., solutions of the coupled systems of BVPs () are solutions of the
following coupled systems of Fredholm integral equations:

{
x(t) = ( – t(–δ)

–δη
)g(x) +

∫ 
 Gα(t, s)φ(t, x(s), y(s)) ds, t ∈ [, ],

y(t) = ( – t(–γ )
–γ ξ

)h(y) +
∫ 

 Gβ (t, s)ψ(t, x(s), y(s)) ds, t ∈ [, ],
()

where Gβ (t, s) is defined by

Gβ (t, s) =


�(β)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(t – s)β– + tγ (ξ–s)β–

–γ ξ
– t(–s)β–

–γ ξ
,  ≤ s ≤ t ≤ ξ ≤ ,

(t – s)β– – t(–s)β–

–γ ξ
,  ≤ ξ ≤ s ≤ t ≤ ,

tγ (ξ–s)β–

–γ ξ
– t(–s)β–

–γ ξ
,  ≤ t ≤ s ≤ ξ ≤ ,

– t(–s)β–

–γ ξ
,  ≤ ξ ≤ t ≤ s ≤ .

()

Clearly

max
t∈[,]

∣
∣Gα(t, s)

∣
∣ =

( – s)α–

( – δη)�(α)
,

max
t∈[,]

∣
∣Gβ (t, s)

∣
∣ =

( – s)β–

( – γ ξ )�(β)
, s ∈ [, ].

()

Define the operators F : X → X, F : Y → Y by

F(x)(t) =
(

 –
t( – δ)
 – δη

)

g(x),

F(y)(t) =
(

 –
t( – γ )
 – γ ξ

)

h(y)

and the operators G, G : X × Y → X × Y by

G(x, y)(t) =
∫ 


Gα(t, s)φ

(
t, x(s), y(s)

)
ds,

G(x, y)(t) =
∫ 


Gβ (t, s)ψ

(
t, x(s), y(s)

)
ds.

Further, we define F = (F, F), G = (G, G) and T = F + G. Then the system of integral
equations () can be written as an operator equation of the form

(x, y) = T(x, y) = F(x, y) + G(x, y), ()

and solutions of the system () are fixed points of T .

Lemma . Under the assumptions (C) and (C), the operator F satisfies the Lipschitz
condition and the following growth condition:

∥
∥F(x, y)

∥
∥ ≤ C

∥
∥(x, y)

∥
∥ + M for every (x, y) ∈ X × Y . ()
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Proof Using the assumption (C), we obtain

∣
∣F(x, y)(t) – F(u, v)(t)

∣
∣

=
∣
∣
∣
∣

(

 –
t( – δ)
 – δη

)
(
g(x) – g(u)

)
+

(

 –
t( – γ )
 – γ ξ

)
(
h(y) – h(v)

)
∣
∣
∣
∣

≤ Kg‖x – u‖ + Kh‖y – v‖ ≤ K
∥
∥(x, y) – (u, v)

∥
∥, K = max{Kg , Kh}. ()

By Proposition ., F is also μ-Lipschitz with constant K . Now for the growth condition
using (C), we get

∥
∥F(x, y)

∥
∥ =

∥
∥
(
F(x), F(y)

)∥
∥ =

∥
∥F(x)

∥
∥ +

∥
∥F(y)

∥
∥ ≤ C

∥
∥(x, y)

∥
∥ + M,

where C = max{Cg , Ch}, M = max{Mg , Mh}. �

Lemma . The operator G is continuous and under the assumption (C) satisfies the
growth condition

∥
∥G(x, y)

∥
∥ ≤ �

∥
∥(x, y)

∥
∥ + � for every (x, y) ∈ X × Y , ()

where � = θ (c + d), θ = max{ 
(–δη)�(α) , 

(–γ ξ )�(β) }, c = max{c, c}, d = max{d, d}, � =
θ (Mφ + Mψ ).

Proof Let {(xn, yn)} be a sequence of a bounded set Ur = {‖(x, y)‖ ≤ r : (x, y) ∈ X × Y } such
that (xn, yn) → (x, y) in Ur . We need to prove that ‖G(xn, yn) – G(x, y)‖ → . Consider

∣
∣G(xn, yn)(t) – G(x, y)(t)

∣
∣

≤ 
�(α)

[∫ t


(t – s)α–∣∣φ

(
s, xn(s), yn(s)

)
– φ

(
s, x(s), y(s)

)∣
∣ds

+
δ

 – δη

∫ η


(η – s)α–∣∣φ

(
s, xn(s), yn(s)

)
– φ

(
s, x(s), y(s)

)∣
∣ds

+


 – δη

∫ 


( – s)α–∣∣φ

(
s, xn(s), yn(s)

)
– φ

(
s, x(s), y(s)

)∣
∣ds

]

.

From the continuity of φ and ψ , it follows that φ(s, xn(s), yn(s)) → φ(s, x(s), y(s)) as n → ∞.
For each t ∈ I , using (C), we obtain (t – s)α–|φ(s, xn, yn) –φ(s, x, y)| ≤ (t – s)α–((c + c)r +
Mφ), which implies the integrability for s, t ∈ I and by using the Lebesgue dominated con-
vergence theorem, we obtain

∫ t
 (t –s)α–|φ(s, xn, yn)–φ(s, x, y)|ds →  as n → ∞. Similarly,

the other terms approach  as n → ∞. It follows that

∥
∥G(xn, yn)(t) – G(x, y)(t)

∥
∥ →  as n → ∞,

and similarly we can show that

∥
∥G(xn, yn)(t) – G(x, y)(t)

∥
∥ →  as n → ∞.
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Now for growth condition on G, using (C) and (), we obtain

∣
∣G(x, y)(t)

∣
∣ =

∣
∣
∣
∣

∫ 


Gα(t, s)φ

(
s, x(s), y(s)

)
ds

∣
∣
∣
∣ ≤ 

( – δη)�(α)
(
c‖x‖ + c‖y‖ + Mφ

)

and

∣
∣G(x, y)(t)

∣
∣ =

∣
∣
∣
∣

∫ 


Gβ (s, t)ψ

(
s, x(s), y(s)

)
ds

∣
∣
∣
∣ ≤ 

( – γ ξ )�(β)
(
d‖x‖ + d‖y‖ + Mψ

)
.

Hence, it follows that

∥
∥G(x, y)

∥
∥ =

∥
∥G(x, y)

∥
∥ +

∥
∥G(x, y)

∥
∥

≤ θ
(
c‖x‖ + c‖y‖ + Mφ

)
+ θ

(
d‖x‖ + d‖y‖ + Mψ

)

≤ θ (c + d)
(‖x‖ + ‖y‖) + θ (Mφ + Mψ ) = �

∥
∥(x, y)

∥
∥ + �.

By this, we complete the proof. �

Lemma . The operator G : X × Y → X × Y is compact. Consequently, G is μ-Lipschitz
with zero constant.

Proof Take a bounded set B ⊂ Ur ⊆ X × Y and a sequence {(xn, yn)} in B, then using (),
we have

∥
∥G(xn, yn)

∥
∥ ≤ �r + � for every (x, y) ∈ X × Y ,

which implies that G(B) is bounded. Now, for equi-continuity and for given ε > , take

δ = min

{

δ =



(
ε�(α + )

([c + c]r + Mφ)

) 
α

, δ =



(
ε�(β + )

([d + d]r + Mψ )

) 
β
}

.

For each (xn, yn) ∈ B, we claim that if t, τ ∈ [, ] and  < τ – t < δ, then

∣
∣G(xn, yn)(t) – G(xn, yn)(τ )

∣
∣ <

ε


.

Now consider

∣
∣G(xn, yn)(t) – G(xn, yn)(τ )

∣
∣

=
∣
∣
∣
∣


�(α)

∫ t



[
(t – s)α– – (τ – s)α–]φ

(
s, xn(s), yn(s)

)
ds

+


�(α)

∫ τ

t
(τ – s)α–φ

(
s, xn(s), yn(s)

)
ds

+
δ(t – τ )

( – δη)�(α)

∫ η


(η – s)α–φ

(
s, xn(s), yn(s)

)
ds

+
(τ – t)

( – δη)�(α)

∫ 


( – s)α–φ

(
s, xn(s), yn(s)

)
ds

∣
∣
∣
∣
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≤ (c|xn| + c|yn| + Mφ)
�(α + )

[(
tα – τα

)
+ (τ – t)α

]

≤ (c + c)r + Mφ

�(α + )
[(

τα – tα
)

+ (τ – t)α
]
.

We continue the proof with several cases.
Case . δ ≤ t < τ < :

∣
∣G(xn, yn)(t) – G(xn, yn)(τ )

∣
∣ <

(c + c)r + Mφ

�(α + )
( + α)δα–

 (τ – t)

<
(c + c)r + Mφ

�(α + )
( + α)δα

 <
ε


.

Case .  ≤ t < δ, τ < δ:

∣
∣G(xn, yn)(t) – G(xn, yn)(τ )

∣
∣ <

(c + c)r + Mφ

�(α + )
[
τα

]

<
(c + c)r + Mφ

�(α + )
(δ)α =

ε


.

Similarly for the second part, for each (xn, yn) ∈ B, we claim that if t, τ ∈ [, ] and  <
τ – t < δ, then |G(xn, yn)(t) – G(xn, yn)(τ )| < ε

 . Then:
Case . δ ≤ t < τ < :

∣
∣G(xn, yn)(t) – G(xn, yn)(τ )

∣
∣ <

(d + d)r + Mψ

�(β + )
( + β)δβ–

 (τ – t)

<
(d + d)r + Mψ

�(β + )
( + β)δβ

 <
ε


.

Case .  ≤ t < δ, τ < δ:

∣
∣G(xn, yn)(t) – G(xn, yn)(τ )

∣
∣ <

(d + d)r + Mψ

�(β + )
[
τβ

]

<
(d + d)r + Mψ

�(β + )
(δ)β =

ε


.

Hence, we have

∥
∥G(xn, yn) – G(xn, yn)

∥
∥ < ε. ()

Thus G(B) is equi-continuous. In view of the Arzelà-Ascoli theorem G(B) is compact.
Furthermore, by Proposition ., G is μ-Lipschitz with constant zero. �

Theorem . Under the assumptions (C)-(C), the system () has at least one solution
(x, y) ∈ X × Y provided C + � < . Moreover, the set of solutions of () is bounded in X × Y .

Proof By Lemma ., F is μ-Lipschitz with constant K ∈ [, ) and by Lemma . G is
μ-Lipschitz with constant . It follows by Proposition . that T is a strict μ-contraction
with constant K . Define

B =
{

(x, y) ∈ X × Y : there exist λ ∈ [, ] such that (x, y) = λT(x, y)
}

.
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We have to prove that B is bounded in X × Y . For this, choose (x, y) ∈ B, then in view of
the growth conditions as in Lemmas . and ., we have

∥
∥(x, y)

∥
∥ =

∥
∥λT(x, y)

∥
∥ = λ

∥
∥T(x, y)

∥
∥ ≤ λ

(∥
∥F(x, y)

∥
∥ +

∥
∥G(x, y)

∥
∥
)

≤ λ
[
C

∥
∥(x, y)

∥
∥ + M + �

∥
∥(x, y)

∥
∥ + �

]

= λ(C + �)
∥
∥(x, y)

∥
∥ + λ(M + �),

which implies that B is bounded in X × Y . Therefore, by Theorem ., T has at least one
fixed point and the set of fixed points is bounded in X × Y . �

Theorem . In addition to the assumption (C)-(C), assume that K + θ (Lφ + Lψ ) < ,
then the system () has a unique solution.

Proof We use the Banach contraction theorem, for (x, y), (u, v) ∈R×R, we have from ()

∣
∣F(x, y) – F(u, v)

∣
∣ ≤ K

∥
∥(x, y) – (u, v)

∥
∥. ()

Using (C) and (), we obtain

∣
∣G(x, y) – G(u, v)

∣
∣ ≤

∫ 



∣
∣Gα(t, s)

∣
∣
∣
∣φ

(
s, x(s), y(s)

)
– φ

(
s, u(s), v(s)

)∣
∣ds

≤ θLφ

(|x – u| + |y – v|),

which implies that

∥
∥G(x, y) – G(u, v)

∥
∥ ≤ θLφ

(‖x – u‖ + ‖y – v‖)

= θLφ

∥
∥(x – u, y – v)

∥
∥

= θLφ

∥
∥(x, y) – (u, v)

∥
∥. ()

Similarly, we have

∥
∥G(x, y) – G(u, v)

∥
∥ ≤ θLψ

∥
∥(x, y) – (u, v)

∥
∥. ()

From () and (), it follows that

∥
∥G(x, y) – G(u, v)

∥
∥ =

∥
∥G(x, y) – G(u, v)

∥
∥ +

∥
∥G(x, y) – G(u, v)

∥
∥

≤ θ (Lψ + Lψ )
∥
∥(x, y) – (u, v)

∥
∥. ()

Hence, in view of () and (), we obtain

∣
∣T(x, y) – T(u, v)

∣
∣ ≤ ∥

∥F(x, y) – F(u, v)
∥
∥ +

∥
∥G(x, y) – G(u, v)

∥
∥

≤ (
K + θ (Lψ + Lψ )

)∥
∥(x, y) – (u, v)

∥
∥,

which implies that T is a contraction. By the Banach contraction principle, the system ()
has a unique solution. �
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4 Example
Example . Consider the following multi-point BVP:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

D 
 x(t) = 

+t ( + |x(t)| + |y(t)|), t ∈ [, ],

D 
 y(t) = +|x(t)|+|y(t)|

+|cos x(t)|+|sin y(t)| , t ∈ [, ],
x() = g(x)

 , x() = 
 x( 

 ),
y() = h(y)

 , y() = 
 y( 

 ).

()

The solution of the BVP () is given by

x(t) =
g(x)



(

 –
t


)

+
∫ 


Gα(t, s)φ

(
s, x(s), y(s)

)
ds,

y(t) =
h(y)



(

 –
t


)

+
∫ 


Gβ (t, s)ψ

(
s, x(s), y(s)

)
ds,

where Gα , Gβ are the Green’s functions and can be obtained easily as obtained generally in
() and (), respectively. From the system () we take α = β = 

 , δ = η = 
 , γ = ξ = 

 , and
r =  ∈ (, ), and let us take λ = 

 ∈ [, ]. Then by the use of Theorem ., we have Lφ =
Lψ = 

 , Mφ = Mψ = 
 = ci = di, for i = , , and taking Kg = 

 , Kh = 
 , then assumptions

(C)-(C) are satisfied. We have

Fx(t) =
g(x)



(

 –
t


)

, Gx(t) =
∫ 


Gα(t, s)φ

(
s, x(s), y(s)

)
ds,

Fy(t) =
h(y)



(

 –
t


)

, Gy(t) =
∫ 


Gβ (t, s)ψ

(
s, x(s), y(s)

)
ds.

Since F, F, G, G are continuous and bounded, also F = (F, F), G = (G, G), which
further implies that T = F + G is continuous and bounded. Further

∥
∥F(x, y) – F(u, v)

∥
∥ ≤ 


∥
∥(x, y) – (u, v)

∥
∥,

that is, if F is μ-Lipschitz with Lipschitz constant 
 and G is μ-Lipschitz with zero con-

stant, this implies that T is a strict-μ-contraction with constant 
 . Further it is easy to

calculate θ = .. As

B =
{

(x, y) ∈ C(I ×R×R,R),∃λ ∈ [, ] : (x, y) =



T(x, y)
}

.

Then the solution

∥
∥(x, y)

∥
∥ ≤ 


∥
∥T(x, y)

∥
∥ ≤ ,

implies that B is bounded and by Theorem . the BVP () has at least a solution (x, y) in
C(I × R × R,R). Furthermore K + θ (Lφ + Lψ ) = . < . Hence by Theorem . the
boundary value problem () has a unique solution.
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